1
|
Huang Z, Yin D. Common and unique network basis for externally and internally driven flexibility in cognition: From a developmental perspective. Dev Cogn Neurosci 2025; 72:101528. [PMID: 39929102 PMCID: PMC11849642 DOI: 10.1016/j.dcn.2025.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Flexibility is a hallmark of cognitive control and can be driven externally and internally, corresponding to reactive and spontaneous flexibility. However, the convergence and divergence between these two types of flexibility and their underlying neural basis during development remain largely unknown. In this study, we aimed to determine the common and unique networks for reactive and spontaneous flexibility as a function of age and sex, leveraging both cross-sectional and longitudinal resting-state functional magnetic resonance imaging datasets with different temporal resolutions (N = 249, 6-35 years old). Functional connectivity strength and nodal flexibility, derived from static and dynamic frameworks respectively, were utilized. We found similar quadratic effects of age on reactive and spontaneous flexibility, which were mediated by the functional connectivity strength and nodal flexibility of the frontoparietal network. Divergence was observed, with the nodal flexibility of the ventral attention network at the baseline visit uniquely predicting the increase in reactive flexibility 24-30 months later, while the nodal flexibility or functional connectivity strength of the dorsal attention network could specifically predict the increase in spontaneous flexibility. Sex differences were found in tasks measuring reactive and spontaneous flexibility simultaneously, which were moderated by the nodal flexibility of the dorsal attention network. This study advances our understanding of distinct types of flexibility in cognition and their underlying mechanisms throughout developmental stages. Our findings also suggest the importance of studying specific types of cognitive flexibility abnormalities in developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China.
| |
Collapse
|
2
|
Sosnik R, Fahoum F, Katzir Z, Mirelman A, Maidan I. Key shifts in frontoparietal network activity in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:2. [PMID: 39753579 PMCID: PMC11699216 DOI: 10.1038/s41531-024-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest. We observed alterations in activity within a distributed network of brain areas associated with attention and inhibition operations, including a circuit pathway connecting frontal and temporal/parietal regions and the limbic network. The alterations in activity were associated with task complexity (single- or dual- task) and group (PD or controls) and encompassed spatial, temporal and spectral dimensions. These results elucidate electrophysiological alterations in four core aspects of brain activity associated with motor-cognitive function in PD patients and hold potential implications for future studies involving adaptive electrical interventions.
Collapse
Affiliation(s)
- Ronen Sosnik
- Faculty of Electrical Engineering, Holon Institute of Technology (H.I.T.), Holon, Israel.
| | - Firas Fahoum
- Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zoya Katzir
- Department of Neurology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Department of Neurology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Di Tella S, De Marco M, Anzuino I, Quaranta D, Baglio F, Silveri MC. The Contribution of Cognitive Control Networks in Word Selection Processing in Parkinson's Disease: Novel Insights from a Functional Connectivity Study. Brain Sci 2024; 14:913. [PMID: 39335408 PMCID: PMC11430391 DOI: 10.3390/brainsci14090913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Parkinson's disease (PD) patients are impaired in word production when the word has to be selected among competing alternatives requiring higher attentional resources. In PD, word selection processes are correlated with the structural integrity of the inferior frontal gyrus, which is critical for response selection, and the uncinate fasciculus, which is necessary for processing lexical information. In early PD, we investigated the role of the main cognitive large-scale networks, namely the salience network (SN), the central executive networks (CENs), and the default mode network (DMN), in word selection. Eighteen PD patients and sixteen healthy controls were required to derive nouns from verbs or generate verbs from nouns. Participants also underwent a resting-state functional MRI. Functional connectivity (FC) was examined using independent component analysis. Functional seeds for the SN, CENs, and DMN were defined as spheres, centered at the local activation maximum. Correlations were calculated between the FC of each functional seed and word production. A significant association between SN connectivity and task performance and, with less evidence, between CEN connectivity and the task requiring selection among a larger number of competitors, emerged in the PD group. These findings suggest the involvement of the SN and CEN in word selection in early PD, supporting the hypothesis of impaired executive control.
Collapse
Affiliation(s)
- Sonia Di Tella
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Isabella Anzuino
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Davide Quaranta
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | | | | |
Collapse
|
4
|
Asendorf AL, Theis H, Tittgemeyer M, Timmermann L, Fink GR, Drzezga A, Eggers C, Ruppert‐Junck MC, Pedrosa DJ, Hoenig MC, van Eimeren T. Dynamic properties in functional connectivity changes and striatal dopamine deficiency in Parkinson's disease. Hum Brain Mapp 2024; 45:e26776. [PMID: 38958131 PMCID: PMC11220510 DOI: 10.1002/hbm.26776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Recent studies in Parkinson's disease (PD) patients reported disruptions in dynamic functional connectivity (dFC, i.e., a characterization of spontaneous fluctuations in functional connectivity over time). Here, we assessed whether the integrity of striatal dopamine terminals directly modulates dFC metrics in two separate PD cohorts, indexing dopamine-related changes in large-scale brain network dynamics and its implications in clinical features. We pooled data from two disease-control cohorts reflecting early PD. From the Parkinson's Progression Marker Initiative (PPMI) cohort, resting-state functional magnetic resonance imaging (rsfMRI) and dopamine transporter (DaT) single-photon emission computed tomography (SPECT) were available for 63 PD patients and 16 age- and sex-matched healthy controls. From the clinical research group 219 (KFO) cohort, rsfMRI imaging was available for 52 PD patients and 17 age- and sex-matched healthy controls. A subset of 41 PD patients and 13 healthy control subjects additionally underwent 18F-DOPA-positron emission tomography (PET) imaging. The striatal synthesis capacity of 18F-DOPA PET and dopamine terminal quantity of DaT SPECT images were extracted for the putamen and the caudate. After rsfMRI pre-processing, an independent component analysis was performed on both cohorts simultaneously. Based on the derived components, an individual sliding window approach (44 s window) and a subsequent k-means clustering were conducted separately for each cohort to derive dFC states (reemerging intra- and interindividual connectivity patterns). From these states, we derived temporal metrics, such as average dwell time per state, state attendance, and number of transitions and compared them between groups and cohorts. Further, we correlated these with the respective measures for local dopaminergic impairment and clinical severity. The cohorts did not differ regarding age and sex. Between cohorts, PD groups differed regarding disease duration, education, cognitive scores and L-dopa equivalent daily dose. In both cohorts, the dFC analysis resulted in three distinct states, varying in connectivity patterns and strength. In the PPMI cohort, PD patients showed a lower state attendance for the globally integrated (GI) state and a lower number of transitions than controls. Significantly, worse motor scores (Unified Parkinson's Disease Rating Scale Part III) and dopaminergic impairment in the putamen and the caudate were associated with low average dwell time in the GI state and a low total number of transitions. These results were not observed in the KFO cohort: No group differences in dFC measures or associations between dFC variables and dopamine synthesis capacity were observed. Notably, worse motor performance was associated with a low number of bidirectional transitions between the GI and the lesser connected (LC) state across the PD groups of both cohorts. Hence, in early PD, relative preservation of motor performance may be linked to a more dynamic engagement of an interconnected brain state. Specifically, those large-scale network dynamics seem to relate to striatal dopamine availability. Notably, most of these results were obtained only for one cohort, suggesting that dFC is impacted by certain cohort features like educational level, or disease severity. As we could not pinpoint these features with the data at hand, we suspect that other, in our case untracked, demographical features drive connectivity dynamics in PD. PRACTITIONER POINTS: Exploring dopamine's role in brain network dynamics in two Parkinson's disease (PD) cohorts, we unraveled PD-specific changes in dynamic functional connectivity. Results in the Parkinson's Progression Marker Initiative (PPMI) and the KFO cohort suggest motor performance may be linked to a more dynamic engagement and disengagement of an interconnected brain state. Results only in the PPMI cohort suggest striatal dopamine availability influences large-scale network dynamics that are relevant in motor control.
Collapse
Affiliation(s)
- Adrian L. Asendorf
- Department of Nuclear MedicineUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Hendrik Theis
- Department of Nuclear MedicineUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
- Department of NeurologyUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Translational Neurocircuitry GroupCologneGermany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)CologneGermany
| | | | - Gereon R. Fink
- Department of NeurologyUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
- Research Centre Juelich, Institute of Neuroscience and Medicine III, Cognitive NeuroscienceJuelichGermany
| | - Alexander Drzezga
- Department of Nuclear MedicineUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Carsten Eggers
- Department of NeurologyMarburgGermany
- Department of NeurologyUniversity of Duisburg‐Essen, Knappschaftskrankenhaus BottropBottropGermany
| | | | - David J. Pedrosa
- Universities of Marburg and Gießen, Center for Mind, Brain, and Behavior‐CMBBMarburgGermany
| | - Merle C. Hoenig
- Department of Nuclear MedicineUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
- Research Center Juelich, Institute of Neuroscience and Medicine II, Molecular Organization of the BrainJuelichGermany
| | - Thilo van Eimeren
- Department of Nuclear MedicineUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
- Department of NeurologyUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| |
Collapse
|
5
|
Li R, Pozorski V, Dabbs K, Haebig M, Cox CR, Pletcher C, Wey A, Barzgari A, Theisen F, Okonkwo O, Gallagher CL. A longitudinal evaluation of personalized intrinsic network topography and cognitive decline in Parkinson's disease. Eur J Neurosci 2024; 60:3795-3811. [PMID: 38752411 PMCID: PMC11638918 DOI: 10.1111/ejn.16380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 12/28/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024]
Abstract
Resting state functional magnetic resonance imaging (R-fMRI) offers insight into how synchrony within and between brain networks is altered in disease states. Individual and disease-related variability in intrinsic connectivity networks may influence our interpretation of R-fMRI data. We used a personalized approach designed to account for individual variation in the spatial location of correlation maxima to evaluate R-fMRI differences between Parkinson's disease (PD) patients who showed cognitive decline, those who remained cognitively stable and cognitively stable controls. We compared fMRI data from these participant groups, studied at baseline and 18 months later, using both network-based statistics (NBS) and calculations of mean inter- and intra-network connectivity within pre-defined functional networks. The NBS analysis showed that PD participants who remained cognitively stable showed exclusively (at baseline) or predominantly (at follow-up) increased intra-network connectivity, whereas decliners showed exclusively reduced intra-network and inter- (ventral attention and default mode) connectivity, in comparison with the control group. Evaluation of mean connectivity between all regions of interest (ROIs) within a priori networks showed that decliners had consistently reduced inter-network connectivity for ventral attention, somatomotor, visual and striatal networks and reduced intra-network connectivity for ventral attention network to striatum and cerebellum. These findings suggest that specific functional connectivity covariance patterns differentiate PD cognitive subtypes and may predict cognitive decline. Further, increased intra and inter-network synchrony may support cognitive function in the face of PD-related network disruptions.
Collapse
Affiliation(s)
- Renxi Li
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Present address:
The George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Vincent Pozorski
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kevin Dabbs
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Maureen Haebig
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Christopher R. Cox
- Department of PsychologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - Colleen Pletcher
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alexandra Wey
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Present address:
Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Amy Barzgari
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Present address:
University of Illinois School of MedicineRockfieldIllinoisUSA
| | - Frances Theisen
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Present address:
CoxHealth Medical Center SouthSpringfieldMOUSA
| | - Ozioma Okonkwo
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer Disease Research CenterMadisonWisconsinUSA
| | - Catherine L. Gallagher
- William S. Middleton V.A. HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer Disease Research CenterMadisonWisconsinUSA
| |
Collapse
|
6
|
Yan S, Lu J, Zhu H, Tian T, Qin Y, Li Y, Zhu W. The influence of accelerated brain aging on coactivation pattern dynamics in Parkinson's disease. J Neurosci Res 2024; 102:e25357. [PMID: 38803227 DOI: 10.1002/jnr.25357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Aging is widely acknowledged as the primary risk factor for brain degeneration, with Parkinson's disease (PD) tending to follow accelerated aging trajectories. We aim to investigate the impact of structural brain aging on the temporal dynamics of a large-scale functional network in PD. We enrolled 62 PD patients and 32 healthy controls (HCs). The level of brain aging was determined by calculating global and local brain age gap estimates (G-brainAGE and L-brainAGE) from structural images. The neural network activity of the whole brain was captured by identifying coactivation patterns (CAPs) from resting-state functional images. Intergroup differences were assessed using the general linear model. Subsequently, a spatial correlation analysis between the L-brainAGE difference map and CAPs was conducted to uncover the anatomical underpinnings of functional alterations. Compared to HCs (-3.73 years), G-brainAGE was significantly higher in PD patients (+1.93 years), who also exhibited widespread elevation in L-brainAGE. G-brainAGE was correlated with disease severity and duration. PD patients spent less time in CAPs involving activated default mode and the fronto-parietal network (DMN-FPN), as well as the sensorimotor and salience network (SMN-SN), and had a reduced transition frequency from other CAPs to the DMN-FPN and SMN-SN CAPs. Furthermore, the pattern of localized brain age acceleration showed spatial similarities with the SMN-SN CAP. Accelerated structural brain aging in PD adversely affects brain function, manifesting as dysregulated brain network dynamics. These findings provide insights into the neuropathological mechanisms underlying neurodegenerative diseases and imply the possibility of interventions for modifying PD progression by slowing the brain aging process.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
8
|
Seitzman BA, Anandarajah H, Dworetsky A, McMichael A, Coalson RS, Agamah AM, Jiang C, Gu H, Barbour DL, Schlaggar BL, Limbrick DD, Rubin JB, Shimony JS, Perkins SM. Cognitive deficits and altered functional brain network organization in pediatric brain tumor patients. Brain Imaging Behav 2023; 17:689-701. [PMID: 37695507 PMCID: PMC10942739 DOI: 10.1007/s11682-023-00798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Survivors of pediatric brain tumors experience significant cognitive deficits from their diagnosis and treatment. The exact mechanisms of cognitive injury are poorly understood, and validated predictors of long-term cognitive outcome are lacking. Resting state functional magnetic resonance imaging allows for the study of the spontaneous fluctuations in bulk neural activity, providing insight into brain organization and function. Here, we evaluated cognitive performance and functional network architecture in pediatric brain tumor patients. Forty-nine patients (7-18 years old) with a primary brain tumor diagnosis underwent resting state imaging during regularly scheduled clinical visits. All patients were tested with a battery of cognitive assessments. Extant data from 139 typically developing children were used as controls. We found that obtaining high-quality imaging data during routine clinical scanning was feasible. Functional network organization was significantly altered in patients, with the largest disruptions observed in patients who received propofol sedation. Awake patients demonstrated significant decreases in association network segregation compared to controls. Interestingly, there was no difference in the segregation of sensorimotor networks. With a median follow-up of 3.1 years, patients demonstrated cognitive deficits in multiple domains of executive function. Finally, there was a weak correlation between decreased default mode network segregation and poor picture vocabulary score. Future work with longer follow-up, longitudinal analyses, and a larger cohort will provide further insight into this potential predictor.
Collapse
Affiliation(s)
- Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hari Anandarajah
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Ally Dworetsky
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alana McMichael
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca S Coalson
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - A Miriam Agamah
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Jiang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjie Gu
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis L Barbour
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Shang S, Ye J, Wu J, Zhang H, Dou W, Krishnan Muthaiah VP, Tian Y, Zhang Y, Chen YC, Yin X. Early disturbance of dynamic synchronization and neurovascular coupling in cognitively normal Parkinson's disease. J Cereb Blood Flow Metab 2022; 42:1719-1731. [PMID: 35473430 PMCID: PMC9441726 DOI: 10.1177/0271678x221098503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathological process in Parkinson's disease (PD) is accompanied with functional and metabolic alterations. The time-varying properties of functional coherence and their coupling to regional perfusion are still rarely elucidated. To investigate early disruption of dynamic regional homogeneity (dReho) and neurovascular coupling in cognitively normal PD patients, dynamic neuronal synchronization and regional perfusion were measured using dReho and cerebral blood flow (CBF), respectively. Neurovascular coupling was assessed by CBF-ReHo correlation coefficient and CBF/ReHo ratio. Multivariate pattern analysis was conducted for the differentiating ability of each feature. Relative to healthy controls (HC) subjects, PD patients demonstrated increased dReho in middle temporal gyrus (MTG), rectus gyrus, middle occipital gyrus, and precuneus, whereas reduced dReho in putamen and supplementary motor area (SMA); while higher CBF/dReho ratio was located in putamen, SMA, paracentral lobule, and postcentral gyrus, whereas lower CBF/dReho ratio in superior temporal gyrus, MTG, precuneus, and angular gyrus (AG). Global and regional CBF-Reho decoupling were both observed in PD groups. The CBF/Reho ratio features achieved more powerful classification performance than other features. From the view of dynamic neural synchronization and neurovascular coupling, this study reinforced the insights into neural basis underlying PD and the potential role in the disease diagnosis and differentiation.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Ye
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jingtao Wu
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China
| | | | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
11
|
Luijendijk MJ, Bekele BM, Schagen SB, Douw L, de Ruiter MB. Temporal Dynamics of Resting-state Functional Networks and Cognitive Functioning following Systemic Treatment for Breast Cancer. Brain Imaging Behav 2022; 16:1927-1937. [PMID: 35705764 PMCID: PMC9581823 DOI: 10.1007/s11682-022-00651-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/13/2022]
Abstract
Many women with breast cancer suffer from a decline in memory and executive function, particularly after treatment with chemotherapy. Recent neuroimaging studies suggest that changes in network dynamics are fundamental in decline in these cognitive functions. This has, however, not yet been investigated in breast cancer patients. Using resting state functional magnetic resonance imaging, we prospectively investigated whether changes in dynamic functional connectivity were associated with changes in memory and executive function. We examined 34 breast cancer patients that received chemotherapy, 32 patients that did not receive chemotherapy, and 35 no-cancer controls. All participants were assessed prior to treatment and six months after completion of chemotherapy, or at similar intervals for the other groups. To assess memory and executive function, we used the Hopkins Verbal Learning Test – Immediate Recall and the Trail Making Test B, respectively. Using a sliding window approach, we then evaluated dynamic functional connectivity of resting state networks supporting memory and executive function, i.e. the default mode network and frontoparietal network, respectively. Next, we directly investigated the association between cognitive performance and dynamic functional connectivity. We found no group differences in cognitive performance or connectivity measures. The association between dynamic functional connectivity of the default mode network and memory differed significantly across groups. This was not the case for the frontoparietal network and executive function. This suggests that cancer and chemotherapy alter the role of dynamic functional connectivity in memory function. Further implications of these findings are discussed.
Collapse
Affiliation(s)
- Maryse J Luijendijk
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Brain and Cognition Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Biniam M Bekele
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands. .,Brain and Cognition Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michiel B de Ruiter
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Yuan YS, Ji M, Gan CT, Sun HM, Wang LN, Zhang KZ. Impaired Interhemispheric Synchrony in Parkinson’s Disease with Fatigue. J Pers Med 2022; 12:jpm12060884. [PMID: 35743669 PMCID: PMC9225138 DOI: 10.3390/jpm12060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
The characteristics of interhemispheric resting-state functional connectivity (FC) in Parkinson’s disease (PD) with fatigue remain unclear; therefore, we aimed to explore the changes in interhemispheric FC in PD patients with fatigue. Sixteen PD patients with fatigue (PDF), 16 PD patients without fatigue (PDNF) and 15 matched healthy controls (HCs) were enrolled in the retrospective cross-sectional study. We used voxel-mirrored homotopic connectivity (VMHC) to analyze the resting-state functional magnetic resonance imaging (fMRI) data of these subjects. Compared to PDNF, PDF patients had decreased VMHC values in the supramarginal gyri (SMG). Furthermore, the mean VMHC values of the SMG were negatively correlated with the mean fatigue severity scale (FSS/9) scores (r = −0.754, p = 0.001). Compared to HCs, PDF patients had decreased VMHC in the SMG and in the opercular parts of the inferior frontal gyri (IFG operc). The VMHC values in the IFG operc and middle frontal gyri (MFG) were notably decreased in PDNF patients compared with HCs. Our findings suggest that the reduced VMHC values within the bilateral SMG may be the unique imaging features of fatigue in PD, and may illuminate the neural mechanisms of fatigue in PD.
Collapse
|
13
|
Liu Q, Shi Z, Wang K, Liu T, Funahashi S, Wu J, Zhang J. Treatment Enhances Betweenness Centrality of Fronto-Parietal Network in Parkinson's Patients. Front Comput Neurosci 2022; 16:891384. [PMID: 35720771 PMCID: PMC9204483 DOI: 10.3389/fncom.2022.891384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated a close relationship between early Parkinson's disease and functional network abnormalities. However, the pattern of brain changes in the early stages of Parkinson's disease has not been confirmed, which has important implications for the study of clinical indicators of Parkinson's disease. Therefore, we investigated the functional connectivity before and after treatment in patients with early Parkinson's disease, and further investigated the relationship between some topological properties and clinicopathological indicators. We included resting state-fMRI (rs-fMRI) data from 27 patients with early Parkinson's disease aged 50-75 years from the Parkinson's Disease Progression Markers Initiative (PPMI). The results showed that the functional connectivity of 6 networks, cerebellum network (CBN), cingulo_opercular network (CON), default network (DMN), fronto-parietal network (FPN), occipital network (OCC), and sensorimotor network (SMN), was significantly changed. Compared to before treatment, the main functional connections were concentrated in the CBN after treatment. In addition, the coefficients of these nodes have also changed. For betweenness centrality (BC), the FPN showed a significant improvement in treatment (p < 0.001). In conclusion, the alteration of functional networks in early Parkinson's patients is critical for clarifying the mechanisms of early diagnosis of the disease.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - ZhongYan Shi
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Kexin Wang
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Tang S, Wang Y, Liu Y, Chau SW, Chan JW, Chu WC, Abrigo JM, Mok VC, Wing YK. Large-scale network dysfunction in α-Synucleinopathy: A meta-analysis of resting-state functional connectivity. EBioMedicine 2022; 77:103915. [PMID: 35259574 PMCID: PMC8904227 DOI: 10.1016/j.ebiom.2022.103915] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background Although dysfunction of large-scale brain networks has been frequently demonstrated in patients with α-Synucleinopathy (α-Syn, i.e., Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy), a consistent pattern of dysfunction remains unclear. We aim to investigate network dysfunction in patients with α-Syn through a meta-analysis. Methods Whole-brain seed-based resting-state functional connectivity studies (published before September 1st, 2020 in English) comparing α-Syn patients with healthy controls (HC) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE). Seeds from each study were categorized into networks by their location within a priori functional networks. Seed-based effect size mapping with Permutation of Subject Images analysis of between-group effects identified the network systems in which α-Syn was associated with hyperconnectivity (increased connectivity in α-Syn vs. HC) or hypoconnectivity (decreased connectivity in α-Syn vs. HC) within and between each seed-network. This study was registered on PROSPERO (CRD42020210133). Findings In total, 136 seed-based voxel-wise resting-state functional connectivity datasets from 72 publications (3093 α-Syn patients and 3331 HC) were included in the meta-analysis. We found that α-Syn patients demonstrated imbalanced connectivity among subcortical network, cerebellum, and frontal parietal networks that involved in motor functioning and executive control. The patient group was associated with hypoconnectivity in default mode network and ventral attention network that involved in cognition and attention. Additionally, the patient group exhibited hyperconnectivity between neural systems involved in top-down emotion regulation and hypoconnectivity between networks involved in bottom-up emotion processing. Interpretation These findings supported neurocognitive models in which network dysfunction is tightly linked to motor, cognitive and psychiatric symptoms observed in α-Syn patients.
Collapse
Affiliation(s)
- Shi Tang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanlin Wang
- Advanced Computing and Digital Engineering Research, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, China
| | - Yaping Liu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steven Wh Chau
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joey Wy Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jill M Abrigo
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
Luo Y, Guo Y, Zhong L, Liu Y, Dang C, Wang Y, Zeng J, Zhang W, Peng K, Liu G. Abnormal dynamic brain activity and functional connectivity of primary motor cortex in blepharospasm. Eur J Neurol 2021; 29:1035-1043. [PMID: 34962021 DOI: 10.1111/ene.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence indicates that dynamic amplitude of low-frequency fluctuations (dALFF) or functional connectivity (dFC) can provide complementary information, distinct from static ALFF (sALFF) or FC (sFC), in detecting brain functional abnormalities in brain diseases. We aimed to examine whether dALFF and dFC can offer valuable information for the detection of functional brain abnormalities in patients with blepharospasm. METHODS We collected resting-state functional magnetic resonance imaging data from 46 patients each of blepharospasm, hemifacial spasm (HFS), and healthy controls (HCs). We examined inter-group differences in sALFF and dALFF to investigate abnormal regional brain activity in patients with blepharospasm. Based on the dALFF results, we conducted seed-based sFC and dFC analyses to identify static and dynamic connectivity changes in brain networks centered on areas showing abnormal temporal variability of local brain activity in patients with blepharospasm. RESULTS Compared with HCs, patients with blepharospasm displayed different brain functional change patterns characterized by increased sALFF in the left primary motor cortex (PMC) but increased dALFF variance in the right PMC. However, differences were not found between patients with HFS and HCs. Additionally, patients with blepharospasm exhibited decreased dFC strength, but no change in sFC, between right PMC and ipsilateral cerebellum compared with HCs; these findings were replicated when patients with blepharospasm were compared to those with HFS. CONCLUSIONS Our findings highlight that dALFF and dFC are complementary to sALFF and sFC and can provide valuable information for detecting brain functional abnormalities in blepharospasm. Blepharospasm may be a network disorder involving the cortico-ponto-cerebello-thalamo-cortical circuit.
Collapse
Affiliation(s)
- Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Yaomin Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Chao Dang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China.,Guangdong-HongKong, Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|