1
|
Voets NL, Bartsch AJ, Plaha P. Functional MRI applications for intra-axial brain tumours: uses and nuances in surgical practise. Br J Neurosurg 2023; 37:1544-1559. [PMID: 36148501 DOI: 10.1080/02688697.2022.2123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Functional MRI (fMRI) has well-established uses to inform risks and plan maximally safe approaches in neurosurgery. In the field of brain tumour surgery, however, fMRI is currently in a state of clinical equipoise due to debate around both its sensitivity and specificity. MATERIALS AND METHODS In this review, we summarise the role and our experience of fMRI in neurosurgery for gliomas and metastases. We discuss nuances in the conduct and interpretation of fMRI that, based on our practise, most directly impact fMRI's usefulness in the neurosurgical setting. RESULTS Illustrated examples in which fMRI in our hands directly influences the neurosurgical treatment of brain tumours include evaluating the probability and nature of functional risks, especially for language functions. These presurgical risk assessments, in turn, help to predict the resectability of tumours, select or deselect patients for awake surgery, indicate the need for neurophysiological monitoring and guide the optimal use of intra-operative stimulation mapping. A further emerging application of fMRI is in measuring functional adaptation of functional networks after (partial) surgery, of potential use in the timing of further surgery. CONCLUSIONS In appropriately selected patients with a clearly defined surgical question, fMRI offers a valuable complementary tool in the pre-surgical evaluation of brain tumours. However, there is a great need for standards in the administration and analysis of fMRI as much as in the techniques that it is commonly evaluated against. Surprisingly little data exists that evaluates the accuracy of fMRI not just against complementary methods, but in terms of its ultimate clinical aim of minimising post-surgical morbidity.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- GenesisCare Ltd, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Neurosurgery, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Yuan B, Zhang N, Gong F, Wang X, Yan J, Lu J, Wu J. Longitudinal assessment of network reorganizations and language recovery in postoperative patients with glioma. Brain Commun 2022; 4:fcac046. [PMID: 35415604 PMCID: PMC8994117 DOI: 10.1093/braincomms/fcac046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 04/02/2022] [Indexed: 12/22/2022] Open
Abstract
For patients with glioma located in or adjacent to the linguistic eloquent cortex, awake surgery with an emphasis on the preservation of language function is preferred. However, the brain network basis of postoperative linguistic functional outcomes remains largely unknown. In this work, 34 patients with left cerebral gliomas who underwent awake surgery were assessed for language function and resting-state network properties before and after surgery. We found that there were 28 patients whose language function returned to at least 80% of the baseline scores within 3 months after surgery or to 85% within 6 months after surgery. For these patients, the spontaneous recovery of language function synchronized with changes within the language and cognitive control networks, but not with other networks. Specifically, compared with baseline values, language functions and global network properties were the worst within 1 month after surgery and gradually recovered within 6 months after surgery. The recovery of connections was tumour location dependent and was attributed to both ipsihemispheric and interhemispheric connections. In contrast, for six patients whose language function did not recover well, severe network disruptions were observed before surgery and persisted into the chronic phase. This study suggests the synchronization of functional network normalization and spontaneous language recovery in postoperative patients with glioma.
Collapse
Affiliation(s)
- Binke Yuan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Nan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangyuan Gong
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xindi Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|