1
|
Tur C, Battiston M, Yiannakas MC, Collorone S, Calvi A, Prados F, Kanber B, Grussu F, Ricciardi A, Pajak P, Martinelli D, Schneider T, Ciccarelli O, Samson RS, Wheeler-Kingshott CAG. What contributes to disability in progressive MS? A brain and cervical cord-matched quantitative MRI study. Mult Scler 2024; 30:516-534. [PMID: 38372019 DOI: 10.1177/13524585241229969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.
Collapse
Affiliation(s)
- Carmen Tur
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Multiple Sclerosis Centre of Catalonia (Cemcat). Vall d'Hebron Institute of Research. Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sara Collorone
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alberto Calvi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, Barcelona, Spain
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- eHealth Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Baris Kanber
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Antonio Ricciardi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Patrizia Pajak
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Daniele Martinelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | - Olga Ciccarelli
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- NIHR UCLH Biomedical Research Centre, London, UK
| | - Rebecca S Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Claudia Am Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Brain Connectivity Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
2
|
Selective vulnerability of brainstem and cervical spinal cord regions in people with non-progressive multiple sclerosis of Black or African American and European ancestry. Mult Scler 2022; 29:691-701. [PMID: 36507671 DOI: 10.1177/13524585221139575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: We evaluated imaging features suggestive of neurodegeneration within the brainstem and upper cervical spinal cord (UCSC) in non-progressive multiple sclerosis (MS). Methods: Standardized 3-Tesla three-dimensional brain magnetic resonance imaging (MRI) studies were prospectively acquired. Rates of change in volume, surface texture, curvature were quantified at the pons and medulla-UCSC. Whole and regional brain volumes and T2-weighted lesion volumes were also quantified. Independent regression models were constructed to evaluate differences between those of Black or African ancestry (B/AA) and European ancestry (EA) with non-progressive MS. Results: 209 people with MS (pwMS) having at least two MRI studies, 29% possessing 3–6 timepoints, resulted in 487 scans for analysis. Median follow-up time between MRI timepoints was 1.33 (25th–75th percentile: 0.51–1.98) years. Of 183 non-progressive pwMS, 88 and 95 self-reported being B/AA and EA, respectively. Non-progressive pwMS demonstrated greater rates of decline in pontine volume ( p < 0.0001) in B/AA and in medulla-UCSC volume ( p < 0.0001) for EA pwMS. Longitudinal surface texture and curvature changes suggesting reduced tissue integrity were observed at the ventral medulla-UCSC ( p < 0.001), dorsal pons ( p < 0.0001) and dorsal medulla ( p < 0.0001) but not the ventral pons ( p = 0.92) between groups. Conclusions: Selectively vulnerable regions within the brainstem-UCSC may allow for more personalized approaches to disease surveillance and management.
Collapse
|