1
|
Wang D, Zhao X, Li J, Song Y, Chen W, Cai X, Liu R, Chen Z. Ginkgo biloba extract mediates HT22 cell proliferation and migration after oxygen-glucose deprivation/reoxygenation via regulating RhoA-ROCK2 signalling pathway. Metab Brain Dis 2025; 40:91. [PMID: 39775993 PMCID: PMC11706868 DOI: 10.1007/s11011-024-01502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
Vascular dementia (VD) is a neurocognitive disorder resulting from cerebral vascular disorders, leading to the demise of neurons and cognitive deficits, posing significant health concerns globally. Derived from Ginkgo biloba leaves, EGb761 is a potent bioactive compound widely recognized for its benefits in treating cerebrovascular diseases. Previous studies have demonstrated that the administration of EGb761 to VD rats enhances the proliferation, differentiation, and migration of neurons, effectively alleviating cognitive dysfunction. However, the specific mechanisms by which EGb761 exerts its remedial influence on VD persist in ambiguity. This investigation utilized an integrated approach incorporating network pharmacology with experimental procedures on HT-22 mouse hippocampal neuronal cells amidst oxygen-glucose deprivation and reoxygenation (OGD/R) to delve into certain repercussions of EGb761 on cell proliferation and migration. Results revealed that ras homolog family member A (RHOA) and B-cell lymphoma 2 (BCL-2) are potential targets of Ginkgo biloba leaves. Target genes are mainly enriched in pathways including those involved in growth hormone synthesis, secretion and action and the neurotrophin signalling pathway. Cellular experiments further demonstrated that the application of EGb761 notably enhanced the viability, proliferation, and migration of HT22 cells subjected to OGD/R through RhoA-ROCK2 pathway. In conclusion, our findings indicated that EGb761 significantly enhances neuronal proliferation and migration following OGD/R injury by targeting the RhoA-ROCK2 signalling pathway, thus offering valuable insights into its potential as a treatment for VD.
Collapse
Affiliation(s)
- Dexiu Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P.R. China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Xin Zhao
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China
| | - Jinghan Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Yang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Ruofan Liu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China.
| | - Zetao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China.
- Subject of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P.R. China.
| |
Collapse
|
2
|
Tanaka M, Yamada E, Mori F. Neurophysiological markers of early cognitive decline in older adults: a mini-review of electroencephalography studies for precursors of dementia. Front Aging Neurosci 2024; 16:1486481. [PMID: 39493278 PMCID: PMC11527679 DOI: 10.3389/fnagi.2024.1486481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
The early detection of cognitive decline in older adults is crucial for preventing dementia. This mini-review focuses on electroencephalography (EEG) markers of early dementia-related precursors, including subjective cognitive decline, subjective memory complaints, and cognitive frailty. We present recent findings from EEG analyses identifying high dementia risk in older adults, with an emphasis on conditions that precede mild cognitive impairment. We also cover event-related potentials, quantitative EEG markers, microstate analysis, and functional connectivity approaches. Moreover, we discuss the potential of these neurophysiological markers for the early detection of cognitive decline as well as their correlations with related biomarkers. The integration of EEG data with advanced artificial intelligence technologies also shows promise for predicting the trajectory of cognitive decline in neurodegenerative disorders. Although challenges remain in its standardization and clinical application, EEG-based approaches offer non-invasive, cost-effective methods for identifying individuals at risk of dementia, which may enable earlier interventions and personalized treatment strategies.
Collapse
Affiliation(s)
- Mutsuhide Tanaka
- Department of Health and Welfare Occupational Therapy Course, Faculty of Health and Welfare, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan
| | - Futoshi Mori
- Department of Health and Welfare Occupational Therapy Course, Faculty of Health and Welfare, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
3
|
Doval S, Nebreda A, Bruña R. Functional connectivity across the lifespan: a cross-sectional analysis of changes. Cereb Cortex 2024; 34:bhae396. [PMID: 39367726 DOI: 10.1093/cercor/bhae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
In the era of functional brain networks, our understanding of how they evolve across life in a healthy population remains limited. Here, we investigate functional connectivity across the human lifespan using magnetoencephalography in a cohort of 792 healthy individuals, categorized into young (13 to 30 yr), middle (31 to 54 yr), and late adulthood (55 to 80 yr). Employing corrected imaginary phase-locking value, we map the evolving landscapes of connectivity within delta, theta, alpha, beta, and gamma classical frequency bands among brain areas. Our findings reveal significant shifts in functional connectivity patterns across all frequency bands, with certain networks exhibiting increased connectivity and others decreased, dependent on the frequency band and specific age groups, showcasing the dynamic reorganization of neural networks as age increases. This detailed exploration provides, to our knowledge, the first all-encompassing view of how electrophysiological functional connectivity evolves at different life stages, offering new insights into the brain's adaptability and the intricate interplay of cognitive aging and network connectivity. This work not only contributes to the body of knowledge on cognitive aging and neurological health but also emphasizes the need for further research to develop targeted interventions for maintaining cognitive function in the aging population.
Collapse
Affiliation(s)
- Sandra Doval
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
4
|
Pallathadka H, Gardanova ZR, Al-Tameemi AR, Al-Dhalimy AMB, Kadhum EH, Redhee AH. Investigating Cortical Complexity in Mixed Dementia through Nonlinear Dynamic Analyses: A Resting-State EEG Study. IRANIAN JOURNAL OF PSYCHIATRY 2024; 19:327-336. [PMID: 39055518 PMCID: PMC11267120 DOI: 10.18502/ijps.v19i3.15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 07/27/2024]
Abstract
Objective: Dementia is a broad term referring to a decline in problem-solving abilities, language skills, memory, and other cognitive functions to a degree that it significantly disrupts everyday activities. The underlying cause of dementia is the impairment or loss of nerve cells and their connections within the brain. The particular symptoms experienced are contingent upon specific regions of the brain affected by this damage. In this research, we aimed to investigate the nonlinear dynamics of the mixed demented brain compared to healthy subjects using electroencephalogram (EEG) analysis. Method : For this purpose, EEG was recorded from 66 patients with mixed dementia and 65 healthy subjects during rest. After signal preprocessing, sample entropy and Katz fractal dimension analyses were applied to the preprocessed EEG data. Analysis of variance with repeated measures was utilized to compare the nonlinear dynamics of brain activity between dementia and healthy states and partial correlation analysis was employed to explore the relationship between EEG complexity measures and cognitive and neuropsychiatric symptoms of patients. Results: Based on repeated measures ANOVA, there was a significant main effect between groups for both Katz fractal dimension (F = 4.10, P = 0.01) and sample entropy (F = 4.81, P = 0.009) measures. Post hoc comparisons revealed that EEG complexity was significantly reduced in dementia mainly in the occipitoparietal and temporal areas (P < 0.05). MMSE scores were positively correlated with EEG complexity measures, while NPI scores were negatively correlated with EEG complexity measures, mainly in the occipitoparietal and temporal areas (P < 0.05). Moreover, using a KNN classifier, all significant complexity measures yielded the best classification performance with an accuracy of 98.05%, sensitivity of 97.03% and specificity of 99.16% in detecting dementia. Conclusion: This study demonstrated a unique dynamic system within the brain impacted by dementia that results in more predictable patterns of cortical activity mainly in the occipitoparietal and temporal areas. These abnormal patterns were associated with patients' cognitive capacity and neuropsychiatric symptoms.
Collapse
Affiliation(s)
| | - Zhanna R. Gardanova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Medical University MGIMO-MED, Moscow, Russia
| | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Dallasta I, Marsh EB. Poststroke Cognitive Decline: Is Functional Connectivity the Key to Tangible Therapeutic Targets? Stroke 2024; 55:1412-1415. [PMID: 38293808 DOI: 10.1161/strokeaha.123.044290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Isabella Dallasta
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Elisabeth B Marsh
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Li Z, Wu M, Yin C, Wang Z, Wang J, Chen L, Zhao W. Machine learning based on the EEG and structural MRI can predict different stages of vascular cognitive impairment. Front Aging Neurosci 2024; 16:1364808. [PMID: 38646447 PMCID: PMC11026635 DOI: 10.3389/fnagi.2024.1364808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background Vascular cognitive impairment (VCI) is a major cause of cognitive impairment in the elderly and a co-factor in the development and progression of most neurodegenerative diseases. With the continuing development of neuroimaging, multiple markers can be combined to provide richer biological information, but little is known about their diagnostic value in VCI. Methods A total of 83 subjects participated in our study, including 32 patients with vascular cognitive impairment with no dementia (VCIND), 21 patients with vascular dementia (VD), and 30 normal controls (NC). We utilized resting-state quantitative electroencephalography (qEEG) power spectra, structural magnetic resonance imaging (sMRI) for feature screening, and combined them with support vector machines to predict VCI patients at different disease stages. Results The classification performance of sMRI outperformed qEEG when distinguishing VD from NC (AUC of 0.90 vs. 0,82), and sMRI also outperformed qEEG when distinguishing VD from VCIND (AUC of 0.8 vs. 0,0.64), but both underperformed when distinguishing VCIND from NC (AUC of 0.58 vs. 0.56). In contrast, the joint model based on qEEG and sMRI features showed relatively good classification accuracy (AUC of 0.72) to discriminate VCIND from NC, higher than that of either qEEG or sMRI alone. Conclusion Patients at varying stages of VCI exhibit diverse levels of brain structure and neurophysiological abnormalities. EEG serves as an affordable and convenient diagnostic means to differentiate between different VCI stages. A machine learning model that utilizes EEG and sMRI as composite markers is highly valuable in distinguishing diverse VCI stages and in individually tailoring the diagnosis.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Department of Neurology, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Meini Wu
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Department of Neurology, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Changhao Yin
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Zhenqi Wang
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jianhang Wang
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Mudanjiang Medical College, Mudanjiang, China
| | - Lingyu Chen
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Mudanjiang Medical College, Mudanjiang, China
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Center for Mudanjiang North Medicine Resource Development and Application Collaborative Innovation, Mudanjiang, China
| |
Collapse
|
7
|
Chino B, López-Sanz D, Doval S, Torres-Simón L, de Frutos Lucas J, Giménez-Llort L, Zegarra-Valdivia J, Maestú F. Resting State Electrophysiological Profiles and Their Relationship with Cognitive Performance in Cognitively Unimpaired Older Adults: A Systematic Review. J Alzheimers Dis 2024; 100:453-468. [PMID: 38875030 PMCID: PMC11307078 DOI: 10.3233/jad-231009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Background Aging is a complex and natural process. The physiological decline related to aging is accompanied by a slowdown in cognitive processes, which begins shortly after individuals reach maturity. These changes have been sometimes interpreted as a compensatory sign and others as a fingerprint of deterioration. Objective In this context, our aim is to uncover the mechanisms that underlie and support normal cognitive functioning in the brain during the later stages of life. Methods With this purpose, a systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, which identified 781 potential articles. After applying inclusion and exclusion criteria, we selected 12 studies that examined the brain oscillations patterns in resting-state conditions associated with cognitive performance in cognitively unimpaired older adults. Results Although cognitive healthy aging was characterized differently across studies, and various approaches to analyzing brain activity were employed, our review indicates a relationship between alpha peak frequency (APF) and improved performance in neuropsychological scores among cognitively unimpaired older adults. Conclusions A higher APF is linked with a higher score in intelligence, executive function, and general cognitive performance, and could be considered an optimal, and easy-to-assess, electrophysiological marker of cognitive health in older adults.
Collapse
Affiliation(s)
- Brenda Chino
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaisalmer de Frutos Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Lydia Giménez-Llort
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
8
|
Anwar U, Arslan T, Hussain A, Russ TC, Lomax P. Design and Evaluation of Wearable Multimodal RF Sensing System for Vascular Dementia Detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:928-940. [PMID: 37267143 DOI: 10.1109/tbcas.2023.3282350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Vascular dementia is the second most common form of dementia and a leading cause of death. Brain stroke and brain atrophy are the major degenerative pathologies associated with vascular dementia. Timely detection of these progressive pathologies is critical to avoid brain damage. Brain imaging is an important diagnostic tool and determines future treatment options available to the patient. Traditional medical technologies are expensive, require extensive supervision and are not easily accessible. This article presents a novel concept of low- complexity wearable sensing system for the detection of brain stroke and brain atrophy using RF sensors. This multimodal RF sensing system provides a first-of-its-kind RF sensing solution for the detection of cerebral blood density variations and blood clots at an initial stage of neurodegeneration. A customized microwave imaging algorithm is presented for the reconstruction of images in affected areas of the brain. Designs are validated using software simulations and hardware modeling. Fabricated sensors are experimentally validated and can effectively detect blood density variation (1050 ± 50 Kg/m3), artificial stroke targets with a volume of 27 mm3 and density of 1025-1050 Kg/m3, and brain atrophy with a cavity of 58 mm3 within a realistic brain phantom. The safety of the proposed wearable RF sensing system is studied through the evaluation of the Specific Absorption Rate (SAR < 1.4 W/Kg, 100 mW) and thermal conductivity of the brain (<0.152 °C). The results indicate that the device is viable as an efficient, portable, and low-cost substitute for vascular dementia detection.
Collapse
|
9
|
Mizoguchi T, Okita M, Minami Y, Fukunaga M, Maki A, Itoh M. Age-dependent dysfunction of the cerebrovascular system in the zebrafish telencephalon. Exp Gerontol 2023; 178:112206. [PMID: 37196825 DOI: 10.1016/j.exger.2023.112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
The brain is an essential organ that controls various biological activities via the nervous system. The cerebral blood vessels supply oxygen and nutrients to neuronal cells and carry away waste products, which is essential in maintaining brain functions. Aging affects cerebral vascular function and decreases brain function. However, the physiological process of age-dependent cerebral vascular dysfunction is not fully understood. In this study, we examined aging effects on cerebral vascular patterning, vascular function, and learning ability in adult zebrafish. We found that the tortuosity of the blood vessels was increased, and the blood flow rate was reduced with aging in the zebrafish dorsal telencephalon. Moreover, we found cerebral blood flow positively correlated with learning ability in middle-old-aged zebrafish, as in aged humans. In addition, we also found that the elastin fiber decreased in the middle-old-aged fish brain vessel, suggesting a possible molecular mechanism underlying vessel dysfunction. Therefore, adult zebrafish may serve as a useful model for studying the aging-dependent decline in vascular function and human diseases such as vascular dementia.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Okita
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuina Minami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Misa Fukunaga
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayumi Maki
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
10
|
Damalerio RB, Lim R, Gao Y, Zhang TT, Cheng MY. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094453. [PMID: 37177657 PMCID: PMC10181682 DOI: 10.3390/s23094453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Dry electroencephalogram (EEG) systems have a short set-up time and require limited skin preparation. However, they tend to require strong electrode-to-skin contact. In this study, dry EEG electrodes with low contact impedance (<150 kΩ) were fabricated by partially embedding a polyimide flexible printed circuit board (FPCB) in polydimethylsiloxane and then casting them in a sensor mold with six symmetrical legs or bumps. Silver-silver chloride paste was used at the exposed tip of each leg or bump that must touch the skin. The use of an FPCB enabled the fabricated electrodes to maintain steady impedance. Two types of dry electrodes were fabricated: flat-disk electrodes for skin with limited hair and multilegged electrodes for common use and for areas with thick hair. Impedance testing was conducted with and without a custom head cap according to the standard 10-20 electrode arrangement. The experimental results indicated that the fabricated electrodes exhibited impedance values between 65 and 120 kΩ. The brain wave patterns acquired with these electrodes were comparable to those acquired using conventional wet electrodes. The fabricated EEG electrodes passed the primary skin irritation tests based on the ISO 10993-10:2010 protocol and the cytotoxicity tests based on the ISO 10993-5:2009 protocol.
Collapse
Affiliation(s)
- Ramona B Damalerio
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Ruiqi Lim
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Yuan Gao
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Tan-Tan Zhang
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Ming-Yuan Cheng
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
11
|
Torres-Simon L, Cuesta P, del Cerro-Leon A, Chino B, Orozco LH, Marsh EB, Gil P, Maestu F. The effects of white matter hyperintensities on MEG power spectra in population with mild cognitive impairment. Front Hum Neurosci 2023; 17:1068216. [PMID: 36875239 PMCID: PMC9977191 DOI: 10.3389/fnhum.2023.1068216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Cerebrovascular disease is responsible for up to 20% of cases of dementia worldwide, but also it is a major comorbid contributor to the progression of other neurodegenerative diseases, like Alzheimer's disease. White matter hyperintensities (WMH) are the most prevalent imaging marker in cerebrovascular disease. The presence and progression of WMH in the brain have been associated with general cognitive impairment and the risk to develop all types of dementia. The aim of this piece of work is the assessment of brain functional differences in an MCI population based on the WMH volume. One-hundred and twenty-nine individuals with mild cognitive impairment (MCI) underwent a neuropsychological evaluation, MRI assessment (T1 and Flair), and MEG recordings (5 min of eyes closed resting state). Those participants were further classified into vascular MCI (vMCI; n = 61, mean age 75 ± 4 years, 35 females) or non-vascular MCI (nvMCI; n = 56, mean age 72 ± 5 years, 36 females) according to their WMH total volume, assessed with an automatic detection toolbox, LST (SPM12). We used a completely data-driven approach to evaluate the differences in the power spectra between the groups. Interestingly, three clusters emerged: One cluster with widespread larger theta power and two clusters located in both temporal regions with smaller beta power for vMCI compared to nvMCI. Those power signatures were also associated with cognitive performance and hippocampal volume. Early identification and classification of dementia pathogenesis is a crucially important goal for the search for more effective management approaches. These findings could help to understand and try to palliate the contribution of WMH to particular symptoms in mixed dementia progress.
Collapse
Affiliation(s)
- Lucia Torres-Simon
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Pablo Cuesta
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Radiology, Rehabilitation, and Physiotherapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Alberto del Cerro-Leon
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Brenda Chino
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Lucia H. Orozco
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Elisabeth B. Marsh
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Pedro Gil
- Instituto de investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Geriatric Medicine, Hospital Universitario San Carlos, Madrid, Spain
| | - Fernando Maestu
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
12
|
Tobe M, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y, Yamanishi T, Takahashi T. Hub structure in functional network of EEG signals supporting high cognitive functions in older individuals. Front Aging Neurosci 2023; 15:1130428. [PMID: 37139091 PMCID: PMC10149684 DOI: 10.3389/fnagi.2023.1130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Maintaining high cognitive functions is desirable for "wellbeing" in old age and is particularly relevant to a super-aging society. According to their individual cognitive functions, optimal intervention for older individuals facilitates the maintenance of cognitive functions. Cognitive function is a result of whole-brain interactions. These interactions are reflected in several measures in graph theory analysis for the topological characteristics of functional connectivity. Betweenness centrality (BC), which can identify the "hub" node, i.e., the most important node affecting whole-brain network activity, may be appropriate for capturing whole-brain interactions. During the past decade, BC has been applied to capture changes in brain networks related to cognitive deficits arising from pathological conditions. In this study, we hypothesized that the hub structure of functional networks would reflect cognitive function, even in healthy elderly individuals. Method To test this hypothesis, based on the BC value of the functional connectivity obtained using the phase lag index from the electroencephalogram under the eyes closed resting state, we examined the relationship between the BC value and cognitive function measured using the Five Cognitive Functions test total score. Results We found a significant positive correlation of BC with cognitive functioning and a significant enhancement in the BC value of individuals with high cognitive functioning, particularly in the frontal theta network. Discussion The hub structure may reflect the sophisticated integration and transmission of information in whole-brain networks to support high-level cognitive function. Our findings may contribute to the development of biomarkers for assessing cognitive function, enabling optimal interventions for maintaining cognitive function in older individuals.
Collapse
Affiliation(s)
- Mayuna Tobe
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Kawaguchi
- Department of Nursing, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
| | | | | | | | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
13
|
Stecker M. A Perspective: Challenges in Dementia Research. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1368. [PMID: 36295529 PMCID: PMC9609997 DOI: 10.3390/medicina58101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Although dementia is a common and devastating disease that has been studied intensely for more than 100 years, no effective disease modifying treatment has been found. At this impasse, new approaches are important. The purpose of this paper is to provide, in the context of current research, one clinician's perspective regarding important challenges in the field in the form of specific challenges. These challenges not only illustrate the scope of the problems inherent in finding treatments for dementia, but can also be specific targets to foster discussion, criticism and new research. One common theme is the need to transform research activities from small projects in individual laboratories/clinics to larger multinational projects, in which each clinician and researcher works as an integral part. This transformation will require collaboration between researchers, large corporations, regulatory/governmental authorities and the general population, as well as significant financial investments. However, the costs of transforming the approach are small in comparison with the cost of dementia.
Collapse
Affiliation(s)
- Mark Stecker
- Fresno Institute of Neuroscience, Fresno, CA 93720, USA
| |
Collapse
|