1
|
Schöne CG, Vibert D, Mast FW. Executive functions in patients with bilateral and unilateral peripheral vestibular dysfunction. J Neurol 2024; 271:3291-3308. [PMID: 38466421 PMCID: PMC11136862 DOI: 10.1007/s00415-024-12267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/13/2024]
Abstract
Previous research suggests that patients with peripheral vestibular dysfunction (PVD) suffer from nonspatial cognitive problems, including executive impairments. However, previous studies that assessed executive functions are conflicting, limited to single executive components, and assessments are confounded by other cognitive functions. We compared performance in a comprehensive executive test battery in a large sample of 83 patients with several conditions of PVD (34 bilateral, 29 chronic unilateral, 20 acute unilateral) to healthy controls who were pairwise matched to patients regarding age, sex, and education. We assessed basic and complex executive functions with validated neuropsychological tests. Patients with bilateral PVD performed worse than controls in verbal initiation and working memory span, while other executive functions were preserved. Patients with chronic unilateral PVD had equal executive performance as controls. Patients with acute unilateral PVD performed worse than controls in the exact same tests as patients with bilateral PVD (verbal initiation, working memory span); however, this effect in patients with acute PVD diminished after correcting for multiple comparisons. Hearing loss and affective disorders did not influence our results. Vestibular related variables (disease duration, symptoms, dizziness handicap, deafferentation degree, and compensation) did not predict verbal initiation or working memory span in patients with bilateral PVD. The results suggest that bilateral PVD not only manifests in difficulties when solving spatial tasks but leads to more general neurocognitive deficits. This understanding is important for multidisciplinary workgroups (e.g., neurotologists, neurologists, audiologists) that are involved in diagnosing and treating patients with PVD. We recommend screening patients with PVD for executive impairments and if indicated providing them with cognitive training or psychoeducational support.
Collapse
Affiliation(s)
- Corina G Schöne
- Department of Psychology, University of Bern, Bern, Switzerland.
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| | - Dominique Vibert
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Guo J, Wang J, Liang P, Tian E, Liu D, Guo Z, Chen J, Zhang Y, Zhou Z, Kong W, Crans DC, Lu Y, Zhang S. Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review). Int J Mol Med 2024; 53:36. [PMID: 38391090 PMCID: PMC10914312 DOI: 10.3892/ijmm.2024.5360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The vestibular system may have a critical role in the integration of sensory information and the maintenance of cognitive function. A dysfunction in the vestibular system has a significant impact on quality of life. Recent research has provided evidence of a connection between vestibular information and cognitive functions, such as spatial memory, navigation and attention. Although the exact mechanisms linking the vestibular system to cognition remain elusive, researchers have identified various pathways. Vestibular dysfunction may lead to the degeneration of cortical vestibular network regions and adversely affect synaptic plasticity and neurogenesis in the hippocampus, ultimately contributing to neuronal atrophy and cell death, resulting in memory and visuospatial deficits. Furthermore, the extent of cognitive impairment varies depending on the specific type of vestibular disease. In the present study, the current literature was reviewed, potential causal relationships between vestibular dysfunction and cognitive performance were discussed and directions for future research were proposed.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Pei Liang
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
3
|
Aedo-Sanchez C, Riquelme-Contreras P, Henríquez F, Aguilar-Vidal E. Vestibular dysfunction and its association with cognitive impairment and dementia. Front Neurosci 2024; 18:1304810. [PMID: 38601091 PMCID: PMC11004345 DOI: 10.3389/fnins.2024.1304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The vestibular system plays an important role in maintaining balance and posture. It also contributes to vertical perception, body awareness and spatial navigation. In addition to its sensory function, the vestibular system has direct connections to key areas responsible for higher cognitive functions, such as the prefrontal cortex, insula and hippocampus. Several studies have reported that vestibular dysfunction, in particular bilateral vestibulopathy, is associated with an increased risk of cognitive impairment and the development of dementias such as Alzheimer's disease. However, it is still controversial whether there is a causal relationship between vestibular damage and cognitive dysfunction. In this mini-review, we will explore the relationship between the vestibular system, cognitive dysfunction and dementia, hypotheses about the hypothesis and causes that may explain this phenomenon and also some potential confounders that may also lead to cognitive impairment. We will also review multimodal neuroimaging approaches that have investigated structural and functional effects on the cortico-vestibular network and finally, describe some approaches to the management of patients with vestibular damage who have shown some cognitive impairment.
Collapse
Affiliation(s)
- Cristian Aedo-Sanchez
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patricio Riquelme-Contreras
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Memory and Neuropsychiatric Center (CMYN), Department of Neurology, Hospital del Salvador and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Fernando Henríquez
- Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enzo Aguilar-Vidal
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Zwergal A, Grabova D, Schöberl F. Vestibular contribution to spatial orientation and navigation. Curr Opin Neurol 2024; 37:52-58. [PMID: 38010039 PMCID: PMC10779452 DOI: 10.1097/wco.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW The vestibular system provides three-dimensional idiothetic cues for updating of one's position in space during head and body movement. Ascending vestibular signals reach entorhinal and hippocampal networks via head-direction pathways, where they converge with multisensory information to tune the place and grid cell code. RECENT FINDINGS Animal models have provided insight to neurobiological consequences of vestibular lesions for cerebral networks controlling spatial cognition. Multimodal cerebral imaging combined with behavioural testing of spatial orientation and navigation performance as well as strategy in the last years helped to decipher vestibular-cognitive interactions also in humans. SUMMARY This review will update the current knowledge on the anatomical and cellular basis of vestibular contributions to spatial orientation and navigation from a translational perspective (animal and human studies), delineate the behavioural and functional consequences of different vestibular pathologies on these cognitive domains, and will lastly speculate on a potential role of vestibular dysfunction for cognitive aging and impeding cognitive impairment in analogy to the well known effects of hearing loss.
Collapse
Affiliation(s)
- Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Denis Grabova
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
| | - Florian Schöberl
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Jian H, Wang S, Li X, Zhao H, Liu S, Lyu Y, Fan Z, Wang H, Zhang D. Effect of Late-Stage Meniere's Disease and Vestibular Functional Impairment on Hippocampal Atrophy. Laryngoscope 2024; 134:410-418. [PMID: 37314111 DOI: 10.1002/lary.30816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE We investigated correlations among clinical features, degree of inner ear endolymphatic hydrops (EH), and hippocampal volume (HV) in different stages of Meniere's disease (MD). METHODS From February 2021 to April 2022, clinical data were collected from 99 patients (39 males, 60 females, mean age: 50.4 ± 10.0 [range: 26-69] years) with unilateral MD admitted to the Department of Vertigo Disease of Shandong ENT Hospital. The left and right ears were affected in 64 and 35 patients, respectively. There were 50 and 49 cases in early (Stages 1, 2) and late stages (Stages 3, 4), respectively. Fifty healthy participants were included as controls. Audiovestibular function test results, EH grading using gadolinium-enhanced magnetic resonance imaging (MRI), and HV determined on MRI were analyzed for patients at different stages of MD. RESULTS Between-group comparisons of early and late MD revealed significant differences in the disease course, vestibular function (VF), degree of EH, and HV. There were no significant between-group differences based on age, sex, affected side, subjective degree of dizziness, hospital anxiety, or depression. Mean HV in patients with early-stage MD was correlated with the canal paresis value of the caloric test and pure tone hearing threshold, HV in late-stage patients was correlated with vestibular EH. CONCLUSION Patients with late-stage MD exhibited severe auditory and VF impairments, increased EH, and atrophy of the HV. More advanced disease was associated with greater vestibular damage and degree of EH. LEVEL OF EVIDENCE 3 Laryngoscope, 134:410-418, 2024.
Collapse
Affiliation(s)
- Huirong Jian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Siyue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Hui Zhao
- Medical Imaging Center, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shanfeng Liu
- Medical Imaging Center, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Yafeng Lyu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| |
Collapse
|
6
|
Bosmans J, Gommeren H, Zu Eulenburg P, Gilles A, Mertens G, Van Ombergen A, Cras P, Engelborghs S, Van Rompaey V. Is vestibular function related to human hippocampal volume? J Vestib Res 2024; 34:3-13. [PMID: 37927291 DOI: 10.3233/ves-230076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND Recent studies implicate the effect of vestibular loss on cognitive decline, including hippocampal volume loss. As hippocampal atrophy is an important biomarker of Alzheimer's disease, exploring vestibular dysfunction as a risk factor for dementia and its role in hippocampal atrophy is of interest. OBJECTIVE To replicate previous literature on whole-brain and hippocampal volume in semicircular canal dysfunction (bilateral vestibulopathy; BV) and explore the association between otolith function and hippocampal volume. METHODS Hippocampal and whole-brain MRI volumes were compared in adults aged between 55 and 83 years. Participants with BV (n = 16) were compared to controls individually matched on age, sex, and hearing status (n = 16). Otolith influence on hippocampal volume in preserved semicircular canal function was evaluated (n = 34). RESULTS Whole-brain and targeted hippocampal approaches using volumetric and surface-based measures yielded no significant differences when comparing BV to controls. Binary support vector machines were unable to classify inner ear health status above chance level. Otolith parameters were not associated with hippocampal volume in preserved semicircular canal function. CONCLUSIONS No significant differences in whole-brain or hippocampal volume were found when comparing BV participants with healthy controls. Saccular parameters in subjects with preserved semicircular canal function were not associated with hippocampal volume changes.
Collapse
Affiliation(s)
- Joyce Bosmans
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
| | - Hanne Gommeren
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Institute for Neuroradiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annick Gilles
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Griet Mertens
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Angelique Van Ombergen
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- Discipline Lead for Life Sciences, SciSpacE Team, Directorate for Human Spaceflight and Robotic Exploration Programmes, European Space Agency
| | - Patrick Cras
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital and Born-Bunge Institute, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
7
|
Yang J, Liang L, Wei Y, Liu Y, Li X, Huang J, Zhang Z, Li L, Deng D. Altered cortical and subcortical morphometric features and asymmetries in the subjective cognitive decline and mild cognitive impairment. Front Neurol 2023; 14:1297028. [PMID: 38107635 PMCID: PMC10722314 DOI: 10.3389/fneur.2023.1297028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction This study aimed to evaluate morphological changes in cortical and subcortical regions and their asymmetrical differences in individuals with subjective cognitive decline (SCD) and mild cognitive impairment (MCI). These morphological changes may provide valuable insights into the early diagnosis and treatment of Alzheimer's disease (AD). Methods We conducted structural MRI scans on a cohort comprising 62 SCD patients, 97 MCI patients, and 70 age-, sex-, and years of education-matched healthy controls (HC). Using Freesurfer, we quantified surface area, thickness, the local gyrification index (LGI) of cortical regions, and the volume of subcortical nuclei. Asymmetry measures were also calculated. Additionally, we explored the correlation between morphological changes and clinical variables related to cognitive decline. Results Compared to HC, patients with MCI exhibited predominantly left-sided surface morphological changes in various brain regions, including the transverse temporal gyrus, superior temporal gyrus, insula, and pars opercularis. SCD patients showed relatively minor surface morphological changes, primarily in the insula and pars triangularis. Furthermore, MCI patients demonstrated reduced volumes in the anterior-superior region of the right hypothalamus, the fimbria of the bilateral hippocampus, and the anterior region of the left thalamus. These observed morphological changes were significantly associated with clinical ratings of cognitive decline. Conclusion The findings of this study suggest that cortical and subcortical morphometric changes may contribute to cognitive impairment in MCI, while compensatory mechanisms may be at play in SCD to preserve cognitive function. These insights have the potential to aid in the early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Jin Yang
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Lingyan Liang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Yichen Wei
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Ying Liu
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Xiaocheng Li
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Jiazhu Huang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Linling Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Demao Deng
- School of Medicine, Guangxi University, Nanning, Guangxi, China
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| |
Collapse
|
8
|
Smith PF. Interpreting the meaning of changes in hippocampal volume associated with vestibular loss. Front Integr Neurosci 2023; 17:1254972. [PMID: 37608860 PMCID: PMC10440551 DOI: 10.3389/fnint.2023.1254972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
Many studies have documented cognitive deficits, especially spatial cognitive deficits, in patients with some form of vestibular loss. Almost 20 years ago, hippocampal (HPC) atrophy was reported to be correlated with spatial memory deficits in such patients and the idea has gradually emerged that HPC atrophy may be causally responsible for the cognitive deficits. However, the results of studies of HPC volume following vestibular loss have not always been consistent, and a number of studies have reported no evidence of HPC atrophy. This paper argues that HPC atrophy, if it does occur following vestibular loss, may not be directly, causally responsible for the cognitive deficits, and that it is more likely that rapid functional changes in the HPC are responsible, due to the interruption of the transmission of vestibular information to the HPC. The argument presented here rests on 3 tranches of evidence: (1) Cognitive deficits have been observed in humans even in the absence of HPC atrophy; (2) HPC atrophy has not been reported in animal studies following vestibular loss, despite cognitive deficits; and (3) Animal studies have shown that the interruption of the transmission of vestibular information to the HPC has immediate consequences for HPC place cells, far too quickly to be explained by HPC atrophy. It is possible that HPC atrophy, when it does occur, is related to the longer-term consquences of living with vestibular loss, which are likely to increase circulating cortisol.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- The Brain Research New Zealand Centre of Research Excellence, Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|