1
|
Pozeg P, Jöhr J, Prior JO, Diserens K, Dunet V. Explaining recovery from coma with multimodal neuroimaging. J Neurol 2024; 271:6274-6288. [PMID: 39090230 PMCID: PMC11377522 DOI: 10.1007/s00415-024-12591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The aim of this prospective, observational cohort study was to investigate and assess diverse neuroimaging biomarkers to predict patients' neurological recovery after coma. 32 patients (18-76 years, M = 44.8, SD = 17.7) with disorders of consciousness participated in the study. Multimodal neuroimaging data acquired during the patient's hospitalization were used to derive cortical glucose metabolism (18F-fluorodeoxyglucose positron emission tomography/computed tomography), and structural (diffusion-weighted imaging) and functional connectivity (resting-state functional MRI) indices. The recovery outcome was defined as a continuous composite score constructed from a multivariate neurobehavioral recovery assessment administered upon the discharge from the hospital. Fractional anisotropy-based white matter integrity in the anterior forebrain mesocircuit (r = 0.72, p < .001, 95% CI: 0.87, 0.45), and the functional connectivity between the antagonistic default mode and dorsal attention resting-state networks (r = - 0.74, p < 0.001, 95% CI: - 0.46, - 0.88) strongly correlated with the recovery outcome. The association between the posterior glucose metabolism and the recovery outcome was moderate (r = 0.38, p = 0.040, 95% CI: 0.66, 0.02). Structural (adjusted R2 = 0.84, p = 0.003) or functional connectivity biomarker (adjusted R2 = 0.85, p = 0.001), but not their combination, significantly improved the model fit to predict the recovery compared solely to bedside neurobehavioral evaluation (adjusted R2 = 0.75). The present study elucidates an important role of specific MRI-derived structural and functional connectivity biomarkers in diagnosis and prognosis of recovery after coma and has implications for clinical care of patients with severe brain injury.
Collapse
Affiliation(s)
- Polona Pozeg
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Jane Jöhr
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Vincent Dunet
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
2
|
Martín-Signes M, Chica AB, Bartolomeo P, Thiebaut de Schotten M. Streams of conscious visual experience. Commun Biol 2024; 7:908. [PMID: 39068236 PMCID: PMC11283449 DOI: 10.1038/s42003-024-06593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Consciousness, a cornerstone of human cognition, is believed to arise from complex neural interactions. Traditional views have focused on localized fronto-parietal networks or broader inter-regional dynamics. In our study, we leverage advanced fMRI techniques, including the novel Functionnectome framework, to unravel the intricate relationship between brain circuits and functional activity shaping visual consciousness. Our findings underscore the importance of the superior longitudinal fasciculus within the fronto-parietal fibers, linking conscious perception with spatial neglect. Additionally, our data reveal the critical contribution of the temporo-parietal fibers and the splenium of the corpus callosum in connecting visual information with conscious representation and their verbalization. Central to these networks is the thalamus, posited as a conductor in synchronizing these interactive processes. Contrasting traditional fMRI analyses with the Functionnectome approach, our results emphasize the important explanatory power of interactive mechanisms over localized activations for visual consciousness. This research paves the way for a comprehensive understanding of consciousness, highlighting the complex network of neural connections that lead to awareness.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Ana B Chica
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne Université, Paris, France.
| |
Collapse
|
3
|
Dagnino PC, Escrichs A, López-González A, Gosseries O, Annen J, Sanz Perl Y, Kringelbach ML, Laureys S, Deco G. Re-awakening the brain: Forcing transitions in disorders of consciousness by external in silico perturbation. PLoS Comput Biol 2024; 20:e1011350. [PMID: 38701063 PMCID: PMC11068192 DOI: 10.1371/journal.pcbi.1011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University of Laval, Québec, Québec, Canada
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Cao Z, Wu J, Liu X, Chen J, Wen J, Qin J, Tan S, Duanmu X, Yuan W, Zheng Q, Zhang B, Huang P, Xu X, Zhang M. Cholinergic basal forebrain system degeneration underlies postural instability/gait difficulty and attention impairment in Parkinson's disease. Eur J Neurol 2024; 31:e16108. [PMID: 37877681 PMCID: PMC11235900 DOI: 10.1111/ene.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND AND PURPOSE The specific pathophysiological mechanisms underlying postural instability/gait difficulty (PIGD) and cognitive function in Parkinson's disease (PD) remain unclear. Both postural and gait control, as well as cognitive function, are associated with the cholinergic basal forebrain (cBF) system. METHODS A total of 84 PD patients and 82 normal controls were enrolled. Each participant underwent motor and cognitive assessments. Diffusion tensor imaging was used to detect structural abnormalities in the cBF system. The cBF was segmented using FreeSurfer, and its fiber tract was traced using probabilistic tractography. To provide information on extracellular water accumulation, free-water fraction (FWf) was quantified. FWf in the cBF and its fiber tract, as well as cortical projection density, were extracted for statistical analyses. RESULTS Patients had significantly higher FWf in the cBF (p < 0.001) and fiber tract (p = 0.021) than normal controls, as well as significantly lower cBF projection in the occipital (p < 0.001), parietal (p < 0.001) and prefrontal cortex (p = 0.005). In patients, a higher FWf in the cBF correlated with worse PIGD score (r = 0.306, p = 0.006) and longer Trail Making Test A time (r = 0.303, p = 0.007). Attentional function (Trail Making Test A) partially mediated the association between FWf in the cBF and PIGD score (indirect effect, a*b = 0.071; total effect, c = 0.256; p = 0.006). CONCLUSIONS Our findings suggest that degeneration of the cBF system in PD, from the cBF to its fiber tract and cortical projection, plays an important role in cognitive-motor interaction.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojie Duanmu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weijin Yuan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qianshi Zheng
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|