1
|
Zidda F, Steiger-White F, Winkelmann T, Ruttorf M, Andoh J, Nees F, Flor H. Early processing of traumatic material and contextual information in posttraumatic stress disorder and its relation to memory impairments. Sci Rep 2025; 15:16362. [PMID: 40348801 PMCID: PMC12065850 DOI: 10.1038/s41598-025-00322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Posttraumatic stress disorder (PTSD) is characterized by exaggerated responses to trauma-relevant cues and impairments in relation to contextual information. However, it is not clear whether this dysfunction is related only to memory processes, or whether early perceptual and attentional processing is already dysfunctional. We examined early processing and retrieval of trauma-related cues and neutral contexts in 20 individuals diagnosed with PTSD (PTSD) and 20 trauma-exposed controls without diagnosis of PTSD (NPTSD) using simultaneous high-density electroencephalography and eye-tracking. A group of 20 non-trauma-exposed healthy controls (HC) was employed to test for responses to trauma-unrelated cues and contexts. The earliest visual event-related potential (C1) was positive for individuals diagnosed with PTSD and negative for NPTSD, suggesting enhanced early visual processing of the cue. Eye-tracking showed that PTSD but not NPTSD displayed significantly longer latencies before looking at contexts than at trauma-related cues. The PTSD group performed significantly worse than the NPTSD group in correctly retrieving rearranged cue/context associations compared to consistent associations. Memory strength for rearranged cue-context pairs was significantly predicted by the early processing measures of the context. Perception of traumatic cues in neutral contexts is biased in PTSD at early processing stages and contributes significantly to the impairment in context-relational memories. For trauma-unrelated cues and contexts no significant differences emerged between PTSD and trauma-exposed as well as non-trauma-exposed controls. Treatments for individuals diagnosed with PTSD should focus on early processing, perception and attention of cue/context traumatic associations in addition to contextual memory.
Collapse
Affiliation(s)
- Francesca Zidda
- Department of Neuropsychology and Psychological Resilience Research, Research Group Learning and Brain Plasticity in Mental Disorders, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Frauke Steiger-White
- Faculty for Social Sciences, Department of Clinical and Biological Psychology and Psychotherapy, University of Mannheim, Mannheim, Germany
| | - Tobias Winkelmann
- Department of Neuropsychology and Psychological Resilience Research, Research Group Learning and Brain Plasticity in Mental Disorders, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jamila Andoh
- Department of Neuropsychology and Psychological Resilience Research, Research Group Learning and Brain Plasticity in Mental Disorders, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frauke Nees
- Department of Neuropsychology and Psychological Resilience Research, Research Group Learning and Brain Plasticity in Mental Disorders, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig- Holstein, Kiel University, Kiel, Germany
| | - Herta Flor
- Department of Neuropsychology and Psychological Resilience Research, Research Group Learning and Brain Plasticity in Mental Disorders, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Gerge A, Rudstam G, Söndergaard HP. Neuroscience-based relational art therapy and deep brain reorienting in the treatment of dissociative identity disorder. Front Psychol 2025; 16:1454483. [PMID: 40092678 PMCID: PMC11906433 DOI: 10.3389/fpsyg.2025.1454483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Art therapy (AT) has been proposed as a treatment for post-traumatic conditions, potentially by providing somatic sensory input that can (i) enhance the client's sense of self and embodiment, (ii) modulate arousal, and (iii) aid in rethinking and reframing traumatic memories. However, evidence supporting AT as a treatment for dissociative disorders remains limited. The theoretical basis for the efficacy of AT is discussed in relation to findings regarding the traumatized person's brain and mindset, as well as its altered functional network connectivity. It is crucial to consider specific alterations in brain networks associated with trauma, particularly those occurring in the deep brain regions, which include the midbrain, the brainstem, and the cerebellum. The hypothesis suggests that early or severe trauma can impair the brain's higher regulatory functions, as explained by the cascade theory. This theory explains how diverse activation patterns within the midbrain's periaqueductal gray (PAG) of the midbrain influence the limbic system and cortices, thereby modulating states of being and behavior. Phase-specific, resource-oriented, and long-term therapy for complexly traumatized and dissociative individuals can benefit from novel insights from neuroimaging studies to inform and enhance therapeutic methods. This is illustrated in a clinical vignette with a client diagnosed with dissociative identity disorder (DID), where deep brain reorienting (DBR) was combined with relational AT. The AT component is hypothesized to have facilitated a sense of grounding in the present moment and enhanced the client's access to her neurophenomenological self. Moreover, changes may have occurred at implicit and non-verbal levels. DBR is believed to have helped the client remain present with her previously avoided and unbearable internal experience. To validate these assumptions, the second author conducted a semi-structured interview that focused on the client's experiences of being dissociative and in psychotherapy, including the effect of DBR when introduced after AT. The client's experiences were articulated through a thematic analysis of the interview, which yielded the following themes: Loneliness, getting help, and moving towards togetherness. Further research on and development of therapy methods that enhance the neuroplasticity necessary for highly dissociative clients to change and heal are highly recommended.
Collapse
Affiliation(s)
- Anna Gerge
- Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Gabriella Rudstam
- Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
3
|
Sunder K, Makale MT, Makale M, Bodhanapati J, Murphy KT, Dennen CA, Baron D, Thanos PK, Hanna C, Ashford JW, Lewandrowski KU, Blum K. Coupling Bio-Resonance Neurotechnology (BRNT) and Dual Hemispheric Repetitive Transcranial Magnetic Stimulation (rTMS) Reduces Comorbid Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) as Demonstrated by PHQ-9 and GAD-7: Pilot Case Series. Psychol Res Behav Manag 2025; 18:225-240. [PMID: 39911857 PMCID: PMC11796452 DOI: 10.2147/prbm.s482960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/24/2024] [Indexed: 02/07/2025] Open
Abstract
Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) are prevalent comorbidities related to a greater likelihood of poor treatment outcomes and prolonged treatment for Reward Deficiency Syndrome (RDS) behaviors. The current exploratory case study of a small cohort (n=3; f=2 m=1) used novel neurotechnology to treat co-occurring MDD and GAD with a multifaceted intervention that combines the novel bio-resonance neurotechnology (BRNT) referred to as NuCalm®, to restore autonomic nervous system balance and dual hemispheric repetitive transcranial magnetic stimulation (rTMS) of the ipsilateral Dorsal Lateral Prefrontal Cortex (DLPFC) to treat the disrupted structural components of the brain. Neuroacoustic brainwave entrainment, electromagnetic frequency bio-resonance, and light-blocking combine to place patients into a parasympathetic dominant state. The paired t-tests indicated a significant decrease in comparing before and after the intervention. The Patient Health Questionnaire PHQ-9 scores from the first to the last time-point (mean difference = 20, t(2) = 6.55, p = 0.0226), with a 95% confidence interval of mean difference ranging from 6.86 to 33.14. Similarly, there was a significant decrease in General Anxiety Disorder GAD-7 questionnaire scores from the first to the last time point (mean difference = 18.67, t(2) = 12.85, p = 0.0060), with a 95% confidence interval of the mean difference ranging from 12.42 to 24.92. After applying the Bonferroni correction, the corrected p-values for PHQ-9 and GAD-7 are 0.0452 and 0.0120, respectively. Cohen's d standardized effect size indicated that the main effect size was 5.47 and 13.8 times the noise (variability), respectively, for the initial versus final PHQ-9 and GAD-7. Further, more extensive, much larger sham-controlled and blinded studies are required to confirm these encouraging results and explore this multifaceted intervention.
Collapse
Affiliation(s)
- Keerthy Sunder
- Department of Psychiatry, University California, UC Riverside School of Medicine, Riverside, CA, USA
- Division of Neuromodulation Research, Karma Doctors & Karma TMS, Palm Springs, CA, USA
- Sunder Foundation, Palm Springs, CA, USA
| | - Milan T Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Miles Makale
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| | - Jothsna Bodhanapati
- Division of Neuromodulation Research, Karma Doctors & Karma TMS, Palm Springs, CA, USA
| | | | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John Wesson Ashford
- Stanford University, Psychiatric /Public Mental Health & Population Sciences Palo Alto, Stanford, CA, USA
| | - Kai-Uwe Lewandrowski
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá D.C., Colombia
| | - Kenneth Blum
- Sunder Foundation, Palm Springs, CA, USA
- Division of Addiction Research & Education, Center for Sports, Exercise and Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Zheng S, Song M, Song N, Zhu H, Li X, Yin D, Liu S, Zhao Y, Fang M, Ning Y, Jia H. Dysfunctional large-scale brain networks in drug-naïve depersonalization-derealization disorder patients. BMC Psychiatry 2025; 25:59. [PMID: 39833729 PMCID: PMC11749103 DOI: 10.1186/s12888-025-06497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Depersonalization-Derealization Disorder (DPRD) presents challenges in understanding its neurobiological underpinnings. Several neuroimaging studies have revealed altered brain function and structure in DPRD. However, the knowledge about large-scale dysfunctional brain networks in DPRD remains unknown. METHODS A total of 47 drug-naïve DPRD patients and 49 healthy controls (HCs) were recruited and underwent resting-state functional scanning. After constructing large-scale brain networks, we calculated within-and between-network functional connectivity (FC) using the Schaefer and Tian atlas. The Support Vector Machine (SVM) model was employed to classify DPRD patients and provide features for DPRD patients concerning the dysfunctional large-scale brain networks. Finally, the correlation analysis was performed between altered functional connectivity of large-scale brain networks and scores of clinical assessments in DPRD patients. RESULTS Compared to HCs, we found significantly decreased FCs, within-networks across four brain networks and between-networks involving 18 pairs of brain networks in DPRD patients. Moreover, our results revealed a satisfactory classification accuracy (80%) of these decreased FCs for correctly identifying DPRD patients. Notably, a significant negative correlation was observed between the 'Self' factor of the CDS and the FC within the somatosensory-motor network. CONCLUSION Overall, disrupted FC of large-scale brain networks may contribute to understanding neurobiological underpinnings in DPRD. Our findings may provide potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mingkang Song
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Nan Song
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated With Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, 361006, China
| | - Hong Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xue Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Dongqing Yin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Shanshan Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yan Zhao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Meng Fang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yanzhe Ning
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Vaisvaser S. Meeting the multidimensional self: fostering selfhood at the interface of Creative Arts Therapies and neuroscience. Front Psychol 2024; 15:1417035. [PMID: 39386142 PMCID: PMC11461312 DOI: 10.3389/fpsyg.2024.1417035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Intriguing explorations at the intersection of the fields of neuroscience and psychology are driven by the quest to understand the neural underpinnings of "the self" and their psychotherapeutic implications. These translational efforts pertain to the unique Creative Arts Therapies (CATs) and the attributes and value of the self-related processes they offer. The self is considered as a multi-layered complex construct, comprising bodily and mental constituents, subjective-objective perspectives, spatial and temporal dimensions. Neuroscience research, mostly functional brain imaging, has proposed cogent models of the constitution, development and experience of the self, elucidating how the multiple dimensions of the self are supported by integrated hierarchical brain processes. The psychotherapeutic use of the art-forms, generating aesthetic experiences and creative processes, touch upon and connect the various layers of self-experience, nurturing the sense of self. The present conceptual analysis will describe and interweave the neural mechanisms and neural network configuration suggested to lie at the core of the ongoing self-experience, its deviations in psychopathology, and implications regarding the psychotherapeutic use of the arts. The well-established, parsimonious and neurobiologically plausible predictive processing account of brain-function will be discussed with regard to selfhood and consciousness. The epistemic affordance of the experiential CATs will further be portrayed, enabling and facilitating the creation of updated self-models of the body in the world. The neuropsychological impact of the relational therapeutic encounter will be delineated, acknowledging the intersubjective brain synchronization through communicative verbal and non-verbal means and aesthetic experiences. The recognition and assimilation of neuroscientific, phenomenological and clinical perspectives concerning the nested dimensionality of the self, ground the relational therapeutic process and the neuroplastic modulations that CATs have to offer on the premise of fostering, shaping and integrating selfhood.
Collapse
Affiliation(s)
- Sharon Vaisvaser
- School of Society and the Arts, Ono Academic College, Kiryat Ono, Israel
| |
Collapse
|
6
|
Clancy KJ, Devignes Q, Ren B, Pollmann Y, Nielsen SR, Howell K, Kumar P, Belleau EL, Rosso IM. Spatiotemporal dynamics of hippocampal-cortical networks underlying the unique phenomenological properties of trauma-related intrusive memories. Mol Psychiatry 2024; 29:2161-2169. [PMID: 38454081 PMCID: PMC11408261 DOI: 10.1038/s41380-024-02486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Trauma-related intrusive memories (TR-IMs) possess unique phenomenological properties that contribute to adverse post-traumatic outcomes, positioning them as critical intervention targets. However, transdiagnostic treatments for TR-IMs are scarce, as their underlying mechanisms have been investigated separate from their unique phenomenological properties. Extant models of more general episodic memory highlight dynamic hippocampal-cortical interactions that vary along the anterior-posterior axis of the hippocampus (HPC) to support different cognitive-affective and sensory-perceptual features of memory. Extending this work into the unique properties of TR-IMs, we conducted a study of eighty-four trauma-exposed adults who completed daily ecological momentary assessments of TR-IM properties followed by resting-state functional magnetic resonance imaging (rs-fMRI). Spatiotemporal dynamics of anterior and posterior hippocampal (a/pHPC)-cortical networks were assessed using co-activation pattern analysis to investigate their associations with different properties of TR-IMs. Emotional intensity of TR-IMs was inversely associated with the frequency and persistence of an aHPC-default mode network co-activation pattern. Conversely, sensory features of TR-IMs were associated with more frequent co-activation of the HPC with sensory cortices and the ventral attention network, and the reliving of TR-IMs in the "here-and-now" was associated with more persistent co-activation of the pHPC and the visual cortex. Notably, no associations were found between HPC-cortical network dynamics and conventional symptom measures, including TR-IM frequency or retrospective recall, underscoring the utility of ecological assessments of memory properties in identifying their neural substrates. These findings provide novel insights into the neural correlates of the unique features of TR-IMs that are critical for the development of individualized, transdiagnostic treatments for this pervasive, difficult-to-treat symptom.
Collapse
Affiliation(s)
- Kevin J Clancy
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Quentin Devignes
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Yara Pollmann
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Sienna R Nielsen
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Kristin Howell
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily L Belleau
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Corredor D, Segobin S, Hinault T, Eustache F, Dayan J, Guillery-Girard B, Naveau M. The multiscale topological organization of the functional brain network in adolescent PTSD. Cereb Cortex 2024; 34:bhae246. [PMID: 38864573 PMCID: PMC11167567 DOI: 10.1093/cercor/bhae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024] Open
Abstract
The experience of an extremely aversive event can produce enduring deleterious behavioral, and neural consequences, among which posttraumatic stress disorder (PTSD) is a representative example. Although adolescence is a period of great exposure to potentially traumatic events, the effects of trauma during adolescence remain understudied in clinical neuroscience. In this exploratory work, we aim to study the whole-cortex functional organization of 14 adolescents with PTSD using a data-driven method tailored to our population of interest. To do so, we built on the network neuroscience framework and specifically on multilayer (multisubject) community analysis to study the functional connectivity of the brain. We show, across different topological scales (the number of communities composing the cortex), a hyper-colocalization between regions belonging to occipital and pericentral regions and hypo-colocalization in middle temporal, posterior-anterior medial, and frontal cortices in the adolescent PTSD group compared to a nontrauma exposed group of adolescents. These preliminary results raise the question of an altered large-scale cortical organization in adolescent PTSD, opening an interesting line of research for future investigations.
Collapse
Affiliation(s)
- David Corredor
- Centre Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, Caen 14000, France
| | - Shailendra Segobin
- Centre Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, Caen 14000, France
| | - Thomas Hinault
- Centre Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, Caen 14000, France
| | - Francis Eustache
- Centre Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, Caen 14000, France
| | - Jacques Dayan
- Centre Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, Caen 14000, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Centre Hospitalier Guillaume Régnier, Université Rennes 1, Rennes 35700, France
| | - Bérengère Guillery-Girard
- Centre Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, Caen 14000, France
| | - Mikaël Naveau
- UNICAEN, CNRS, INSERM, CEA, UAR3408 CYCERON, Normandie Université, Caen 14000, France
| |
Collapse
|
8
|
Elbasheir A, Katrinli S, Kearney BE, Lanius RA, Harnett NG, Carter SE, Ely TD, Bradley B, Gillespie CF, Stevens JS, Lori A, van Rooij SJH, Powers A, Jovanovic T, Smith AK, Fani N. Racial Discrimination, Neural Connectivity, and Epigenetic Aging Among Black Women. JAMA Netw Open 2024; 7:e2416588. [PMID: 38869898 PMCID: PMC11177169 DOI: 10.1001/jamanetworkopen.2024.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 06/14/2024] Open
Abstract
Importance Racial discrimination increases the risk of adverse brain health outcomes, potentially via neuroplastic changes in emotion processing networks. The involvement of deep brain regions (brainstem and midbrain) in these responses is unknown. Potential associations of racial discrimination with alterations in deep brain functional connectivity and accelerated epigenetic aging, a process that substantially increases vulnerability to health problems, are also unknown. Objective To examine associations of racial discrimination with brainstem and midbrain resting-state functional connectivity (RSFC) and DNA methylation age acceleration (DMAA) among Black women in the US. Design, Setting, and Participants This cohort study was conducted between January 1, 2012, and February 28, 2015, and included a community-based sample of Black women (aged ≥18 years) recruited as part of the Grady Trauma Project. Self-reported racial discrimination was examined in association with seed-to-voxel brain connectivity, including the locus coeruleus (LC), periaqueductal gray (PAG), and superior colliculus (SC); an index of DMAA (Horvath clock) was also evaluated. Posttraumatic stress disorder (PTSD), trauma exposure, and age were used as covariates in statistical models to isolate racial discrimination-related variance. Data analysis was conducted between January 10 and October 30, 2023. Exposure Varying levels of racial discrimination exposure, other trauma exposure, and posttraumatic stress disorder (PTSD). Main Outcomes and Measures Racial discrimination frequency was assessed with the Experiences of Discrimination Scale, other trauma exposure was evaluated with the Traumatic Events Inventory, and current PTSD was evaluated with the PTSD Symptom Scale. Seed-to-voxel functional connectivity analyses were conducted with LC, PAG, and SC seeds. To assess DMAA, the Methylation EPIC BeadChip assay (Illumina) was conducted with whole-blood samples from a subset of 49 participants. Results This study included 90 Black women, with a mean (SD) age of 38.5 (11.3) years. Greater racial discrimination was associated with greater left LC RSFC to the bilateral precuneus (a region within the default mode network implicated in rumination and reliving of past events; cluster size k = 228; t85 = 4.78; P < .001, false discovery rate-corrected). Significant indirect effects were observed for the left LC-precuneus RSFC on the association between racial discrimination and DMAA (β [SE] = 0.45 [0.16]; 95% CI, 0.12-0.77). Conclusions and Relevance In this study, more frequent racial discrimination was associated with proportionately greater RSFC of the LC to the precuneus, and these connectivity alterations were associated with DMAA. These findings suggest that racial discrimination contributes to accelerated biological aging via altered connectivity between the LC and default mode network, increasing vulnerability for brain health problems.
Collapse
Affiliation(s)
- Aziz Elbasheir
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Seyma Katrinli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nathaniel G. Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J. H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
9
|
Lanius RA, Kearney BE. Contextualized hippocampal-cortical dynamics underlying traumatic memory. Trends Neurosci 2024; 47:400-401. [PMID: 38772753 DOI: 10.1016/j.tins.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
In a recent study, Clancy et al. elucidate a connection between activity patterns of the hippocampus (HC) and the broader functional connectivity networks associated with trauma-related intrusive memories (TR-IMs). This neurophenomenological methodology situates the HC within a larger neural framework and provides a nuanced exploration of the neurobiological underpinnings of distinct characteristics of TR-IMs.
Collapse
Affiliation(s)
- Ruth A Lanius
- Department of Neuroscience, Western University, London, ONT, Canada; Department of Psychiatry, Western University, London, ONT, Canada.
| | | |
Collapse
|
10
|
Chaposhloo M, Nicholson AA, Becker S, McKinnon MC, Lanius R, Shaw SB. Altered Resting-State functional connectivity in the anterior and posterior hippocampus in Post-traumatic stress disorder: The central role of the anterior hippocampus. Neuroimage Clin 2023; 38:103417. [PMID: 37148709 PMCID: PMC10193024 DOI: 10.1016/j.nicl.2023.103417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Post-traumatic stress disorder can be viewed as a memory disorder, with trauma-related flashbacks being a core symptom. Given the central role of the hippocampus in autobiographical memory, surprisingly, there is mixed evidence concerning altered hippocampal functional connectivity in PTSD. We shed light on this discrepancy by considering the distinct roles of the anterior versus posterior hippocampus and examine how this distinction may map onto whole-brain resting-state functional connectivity patterns among those with and without PTSD. METHODS We first assessed whole-brain between-group differences in the functional connectivity profiles of the anterior and posterior hippocampus within a publicly available data set of resting-state fMRI data from 31 male Vietnam war veterans diagnosed with PTSD (mean age = 67.6 years, sd = 2.3) and 29 age-matched combat-exposed male controls (age = 69.1 years, sd = 3.5). Next, the connectivity patterns of each subject within the PTSD group were correlated with their PTSD symptom scores. Finally, the between-group differences in whole-brain functional connectivity profiles discovered for the anterior and posterior hippocampal seeds were used to prescribe post-hoc ROIs, which were then used to perform ROI-to-ROI functional connectivity and graph-theoretic analyses. RESULTS The PTSD group showed increased functional connectivity of the anterior hippocampus with affective brain regions (anterior/posterior insula, orbitofrontal cortex, temporal pole) and decreased functional connectivity of the anterior/posterior hippocampus with regions involved in processing bodily self-consciousness (supramarginal gyrus). Notably, decreased anterior hippocampus connectivity with the posterior cingulate cortex/precuneus was associated with increased PTSD symptom severity. The left anterior hippocampus also emerged as a central locus of abnormal functional connectivity, with graph-theoretic measures suggestive of a more central hub-like role for this region in those with PTSD compared to trauma-exposed controls. CONCLUSIONS Our results highlight that the anterior hippocampus plays a critical role in the neurocircuitry underlying PTSD and underscore the importance of the differential roles of hippocampal sub-regions in serving as biomarkers of PTSD. Future studies should investigate whether the differential patterns of functional connectivity stemming from hippocampal sub-regions is observed in PTSD populations other than older war veterans.
Collapse
Affiliation(s)
- Mohammad Chaposhloo
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrew A Nicholson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Atlas Institute for Veterans and Families, Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, Ontario, Canada; School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Ruth Lanius
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh Bhaskar Shaw
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada.
| |
Collapse
|