1
|
Zahn R. The psychopathology of mood disorders: implications for identifying neurocognitive intervention targets. J Affect Disord 2025:119423. [PMID: 40383302 DOI: 10.1016/j.jad.2025.119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Neurofeedback and neuromodulation treatments are of increasing clinical interest, but their neurocognitive targets are poorly understood. METHODS In this review, we will use Jaspers' phenomenological psychopathology combined with modern network analysis to identify neurocognitive treatment targets by focussing on distinctive and necessary symptoms of mood disorders as well as their subsyndromal and prognostic variations. RESULTS We discuss the early descriptions of Kraepelin's mixed affective states and suggest a model of four mood states (depressed, anxious, irritable, and elated) and their dynamic evolution and mixing. Blame and praise internalisation and externalisation biases are proposed as key mechanisms underpinning mood states, together with approach/withdrawal-related action tendencies. Whilst self-worth and interest emerge as the most distinctive symptom dimensions, that are necessary for bipolar and recurrent unipolar depressive disorders, we also discuss anxiety as a potential primary symptom in a subgroup of chronic depression. Based on a neuroanatomical model of the conceptual self, anterior temporal and subgenual networks and their importance for self-blame and worthlessness, as well as the hypothesised role of septo-hypothalamic networks for affiliative interest are discussed. The latter is distinguished from ventral striatal networks as relevant for more general approach-related action tendencies and hedonic interest (anticipatory anhedonia). Finally, recent target validation from early-stage fMRI neurofeedback trials are reviewed. LIMITATIONS It was not feasible to employ a systematic review approach. CONCLUSIONS Neurofeedback studies are not only of interest as new treatments, but also for enhancing our pathophysiological understanding and could gain clinical impact with ongoing advances in scalable neurotechnologies.
Collapse
Affiliation(s)
- Roland Zahn
- Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, King's College London, UK; South London and Maudsley NHS Foundation Trust, London BR3 3BX, United Kingdom.
| |
Collapse
|
2
|
Fennema D, Barker GJ, O’Daly O, Godlewska BR, Carr E, Goldsmith K, Young AH, Moll J, Zahn R. Neural signatures of emotional biases predict clinical outcomes in difficult-to-treat depression. RESEARCH DIRECTIONS. DEPRESSION 2024; 1:e21. [PMID: 40028885 PMCID: PMC11869767 DOI: 10.1017/dep.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 03/05/2025]
Abstract
Background Neural predictors underlying variability in depression outcomes are poorly understood. Functional MRI measures of subgenual cortex connectivity, self-blaming and negative perceptual biases have shown prognostic potential in treatment-naïve, medication-free and fully remitting forms of major depressive disorder (MDD). However, their role in more chronic, difficult-to-treat forms of MDD is unknown. Methods Forty-five participants (n = 38 meeting minimum data quality thresholds) fulfilled criteria for difficult-to-treat MDD. Clinical outcome was determined by computing percentage change at follow-up from baseline (four months) on the self-reported Quick Inventory of Depressive Symptomatology (16-item). Baseline measures included self-blame-selective connectivity of the right superior anterior temporal lobe with an a priori Brodmann Area 25 region-of-interest, blood-oxygen-level-dependent a priori bilateral amygdala activation for subliminal sad vs happy faces, and resting-state connectivity of the subgenual cortex with an a priori defined ventrolateral prefrontal cortex/insula region-of-interest. Findings A linear regression model showed that baseline severity of depressive symptoms explained 3% of the variance in outcomes at follow-up (F[3,34] = .33, p = .81). In contrast, our three pre-registered neural measures combined, explained 32% of the variance in clinical outcomes (F[4,33] = 3.86, p = .01). Conclusion These findings corroborate the pathophysiological relevance of neural signatures of emotional biases and their potential as predictors of outcomes in difficult-to-treat depression.
Collapse
Affiliation(s)
- Diede Fennema
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Owen O’Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Beata R. Godlewska
- Psychopharmacology Research Unit, University Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Ewan Carr
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Kimberley Goldsmith
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Allan H. Young
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- National Service for Affective Disorders, South London and Maudsley NHS Foundation Trust, London, UK
| | - Jorge Moll
- Cognitive and Behavioral Neuroscience Unit, D’Or Institute for Research and Education (IDOR), Pioneer Science Program, Rio de Janeiro, Brazil
| | - Roland Zahn
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- National Service for Affective Disorders, South London and Maudsley NHS Foundation Trust, London, UK
- Cognitive and Behavioral Neuroscience Unit, D’Or Institute for Research and Education (IDOR), Pioneer Science Program, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Fennema D, Barker GJ, O'Daly O, Duan S, Godlewska BR, Goldsmith K, Young AH, Moll J, Zahn R. Neural responses to facial emotions and subsequent clinical outcomes in difficult-to-treat depression. Psychol Med 2024; 54:3044-3052. [PMID: 38757184 DOI: 10.1017/s0033291724001144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BACKGROUND Amygdala and dorsal anterior cingulate cortex responses to facial emotions have shown promise in predicting treatment response in medication-free major depressive disorder (MDD). Here, we examined their role in the pathophysiology of clinical outcomes in more chronic, difficult-to-treat forms of MDD. METHODS Forty-five people with current MDD who had not responded to ⩾2 serotonergic antidepressants (n = 42, meeting pre-defined fMRI minimum quality thresholds) were enrolled and followed up over four months of standard primary care. Prior to medication review, subliminal facial emotion fMRI was used to extract blood-oxygen level-dependent effects for sad v. happy faces from two pre-registered a priori defined regions: bilateral amygdala and dorsal/pregenual anterior cingulate cortex. Clinical outcome was the percentage change on the self-reported Quick Inventory of Depressive Symptomatology (16-item). RESULTS We corroborated our pre-registered hypothesis (NCT04342299) that lower bilateral amygdala activation for sad v. happy faces predicted favorable clinical outcomes (rs[38] = 0.40, p = 0.01). In contrast, there was no effect for dorsal/pregenual anterior cingulate cortex activation (rs[38] = 0.18, p = 0.29), nor when using voxel-based whole-brain analyses (voxel-based Family-Wise Error-corrected p < 0.05). Predictive effects were mainly driven by the right amygdala whose response to happy faces was reduced in patients with higher anxiety levels. CONCLUSIONS We confirmed the prediction that a lower amygdala response to negative v. positive facial expressions might be an adaptive neural signature, which predicts subsequent symptom improvement also in difficult-to-treat MDD. Anxiety reduced adaptive amygdala responses.
Collapse
Affiliation(s)
- Diede Fennema
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Suqian Duan
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK
| | - Beata R Godlewska
- Psychopharmacology Research Unit, University Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Kimberley Goldsmith
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Allan H Young
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK
- National Service for Affective Disorders, South London and Maudsley NHS Foundation Trust, London, UK
| | - Jorge Moll
- Cognitive and Behavioural Neuroscience Unit, D'Or Institute for Research and Education (IDOR), Pioneer Science Program, Rio de Janeiro, Brazil
| | - Roland Zahn
- Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, London, UK
- National Service for Affective Disorders, South London and Maudsley NHS Foundation Trust, London, UK
- Cognitive and Behavioural Neuroscience Unit, D'Or Institute for Research and Education (IDOR), Pioneer Science Program, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Fennema D, Barker GJ, O’Daly O, Duan S, Carr E, Goldsmith K, Young AH, Moll J, Zahn R. The Role of Subgenual Resting-State Connectivity Networks in Predicting Prognosis in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100308. [PMID: 38645404 PMCID: PMC11033067 DOI: 10.1016/j.bpsgos.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Background A seminal study found higher subgenual frontal cortex resting-state connectivity with 2 left ventral frontal regions and the dorsal midbrain to predict better response to psychotherapy versus medication in individuals with treatment-naïve major depressive disorder (MDD). Here, we examined whether these subgenual networks also play a role in the pathophysiology of clinical outcomes in MDD with early treatment resistance in primary care. Methods Forty-five people with current MDD who had not responded to ≥2 serotonergic antidepressants (n = 43, meeting predefined functional magnetic resonance imaging minimum quality thresholds) were enrolled and followed over 4 months of standard care. Functional magnetic resonance imaging resting-state connectivity between the preregistered subgenual frontal cortex seed and 3 previously identified left ventromedial, ventrolateral prefrontal/insula, and dorsal midbrain regions was extracted. The clinical outcome was the percentage change on the self-reported 16-item Quick Inventory of Depressive Symptomatology. Results We observed a reversal of our preregistered hypothesis in that higher resting-state connectivity between the subgenual cortex and the a priori ventrolateral prefrontal/insula region predicted favorable rather than unfavorable clinical outcomes (rs39 = -0.43, p = .006). This generalized to the sample including participants with suboptimal functional magnetic resonance imaging quality (rs43 = -0.35, p = .02). In contrast, no effects (rs39 = 0.12, rs39 = -0.01) were found for connectivity with the other 2 preregistered regions or in a whole-brain analysis (voxel-based familywise error-corrected p < .05). Conclusions Subgenual connectivity with the ventrolateral prefrontal cortex/insula is relevant for subsequent clinical outcomes in current MDD with early treatment resistance. Its positive association with favorable outcomes could be explained primarily by psychosocial rather than the expected pharmacological changes during the follow-up period.
Collapse
Affiliation(s)
- Diede Fennema
- Centre of Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, Centre for Affective Disorders, King’s College London, London, United Kingdom
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Owen O’Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Suqian Duan
- Centre of Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, Centre for Affective Disorders, King’s College London, London, United Kingdom
| | - Ewan Carr
- Department of Biostatics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Kimberley Goldsmith
- Department of Biostatics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Allan H. Young
- Centre of Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, Centre for Affective Disorders, King’s College London, London, United Kingdom
- National Service for Affective Disorders, South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Jorge Moll
- Cognitive and Behavioural Neuroscience Unit, D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Roland Zahn
- Centre of Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, Centre for Affective Disorders, King’s College London, London, United Kingdom
- Cognitive and Behavioural Neuroscience Unit, D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- National Service for Affective Disorders, South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|