1
|
Klein C, Ramminger I, Bai S, Steinberg T, Tomakidi P. Impairment of Intermediate Filament Expression Reveals Impact on Cell Functions Independent from Keratinocyte Transformation. Cells 2024; 13:1960. [PMID: 39682709 PMCID: PMC11640723 DOI: 10.3390/cells13231960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Although cytoplasmic intermediate filaments (cIFs) are essential for cell physiology, the molecular and cell functional consequences of cIF disturbances are poorly understood. Identifying defaults in cell function-controlled tissue homeostasis and understanding the interrelationship between specific cIFs and distinct cell functions remain key challenges. Using an RNAi-based mechanistic approach, we connected the impairment of cell-inherent cIFs with molecular and cell functional consequences, such as proliferation and differentiation. To investigate cIF disruption consequences in the oral epithelium, different cell transformation stages, originating from alcohol-treated oral gingival keratinocytes, were used. We found that impairment of keratin (KRT) KRT5, KRT14 and vimentin (VIM) affects proliferation and differentiation, and modulates the chromatin status. Furthermore, cIF impairment reduces the expression of nuclear integrity participant lamin B1 and the terminal keratinocyte differentiation marker involucrin (IVL). Conversely, impairment of IVL reduces cIF expression levels, functionally suggesting a regulatory interaction between cIFs and IVL. The findings demonstrate that the impairment of cIFs leads to imbalances in proliferation and differentiation, both of which are essential for tissue homeostasis. Thus, targeted impairment of cIFs appears promising to investigate the functional role of cIFs on cell-dependent tissue physiology at the molecular level and identifies putative interactions of cIFs with epithelial differentiation.
Collapse
Affiliation(s)
- Charlotte Klein
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (C.K.); (I.R.); (S.B.); (P.T.)
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (C.K.); (I.R.); (S.B.); (P.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Shuoqiu Bai
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (C.K.); (I.R.); (S.B.); (P.T.)
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (C.K.); (I.R.); (S.B.); (P.T.)
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (C.K.); (I.R.); (S.B.); (P.T.)
| |
Collapse
|
2
|
Molecular Research on Oral Diseases and Related Biomaterials: A Journey from Oral Cell Models to Advanced Regenerative Perspectives. Int J Mol Sci 2022; 23:ijms23095288. [PMID: 35563679 PMCID: PMC9105421 DOI: 10.3390/ijms23095288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.
Collapse
|
3
|
Husari A, Hülter-Hassler D, Steinberg T, Schulz SD, Tomakidi P. Disruption of adherens junction and alterations in YAP-related proliferation behavior as part of the underlying cell transformation process of alcohol-induced oral carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:209-219. [DOI: 10.1016/j.bbamcr.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
|
4
|
Somchit M, Changtam C, Kimseng R, Utaipan T, Lertcanawanichakul M, Suksamrarn A, Chunglok W. Demethoxycurcumin from Curcuma longa rhizome suppresses iNOS induction in an in vitro inflamed human intestinal mucosa model. Asian Pac J Cancer Prev 2014; 15:1807-10. [PMID: 24641413 DOI: 10.7314/apjcp.2014.15.4.1807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is known that inducible nitric oxide synthase (iNOS)/nitric oxide (NO) plays an integral role during intestinal inflammation, an important factor for colon cancer development. Natural compounds from Curcuma longa L. (Zingiberaceae) have long been a potential source of bioactive materials with various beneficial biological functions. Among them, a major active curcuminoid, demethoxycurcumin (DMC) has been shown to possess anti-inflammatory properties in lipopolysaccharide (LPS)-activated macrophages or microglia cells. However, the role of DMC on iNOS expression and NO production in an in vitro inflamed human intestinal mucosa model has not yet been elucidated. This study concerned inhibitory effects on iNOS expression and NO production of DMC in inflamed human intestinal Caco-2 cells. An in vitro model was generated and inhibitory effects on NO production of DMC at 65 μM for 24-96 h were assessed by monitoring nitrite levels. Expression of iNOS mRNA and protein was also investigated. DMC significantly decreased NO secretion by 35-41% in our inflamed cell model. Decrease in NO production by DMC was concomitant with down-regulation of iNOS at mRNA and protein levels compared to proinflammatory cytokine cocktail and LPS-treated controls. Mechanism of action of DMC may be partly due to its potent inhibition of the iNOS pathway. Our findings suggest that DMC may have potential as a therapeutic agent against inflammation-related diseases, especially in the gut.
Collapse
Affiliation(s)
- Mayura Somchit
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand E-mail :
| | | | | | | | | | | | | |
Collapse
|
5
|
Sattayakhom A, Chunglok W, Ittarat W, Chamulitrat W. Study designs to investigate Nox1 acceleration of neoplastic progression in immortalized human epithelial cells by selection of differentiation resistant cells. Redox Biol 2013; 2:140-7. [PMID: 24494188 PMCID: PMC3909263 DOI: 10.1016/j.redox.2013.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022] Open
Abstract
To investigate the role of NADPH oxidase homolog Nox1 at an early step of cell transformation, we utilized human gingival mucosal keratinocytes immortalized by E6/E7 of human papillomavirus (HPV) type 16 (GM16) to generate progenitor cell lines either by chronic ethanol exposure or overexpression with Nox1. Among several cobblestone epithelial cell lines obtained, two distinctive spindle cell lines - FIB and NuB1 cells were more progressively transformed exhibiting tubulogenesis and anchorage-independent growth associated with increased invasiveness. These spindle cells acquired molecular markers of epithelial mesenchymal transition (EMT) including mesenchymal vimentin and simple cytokeratins (CK) 8 and 18 as well as myogenic alpha-smooth muscle actin and caldesmon. By overexpression and knockdown experiments, we showed that Nox1 on a post-translational level regulated the stability of CK18 in an ROS-, phosphorylation- and PKCepilon-dependent manner. PKCepilon may thus be used as a therapeutic target for EMT inhibition. Taken together, Nox1 accelerates neoplastic progression by regulating structural intermediate filaments leading to EMT of immortalized human gingival epithelial cells.
Collapse
Key Words
- AIG, anchorage-independent growth
- CK, cytokeratin
- Cobblestone cells
- Cytokeratins
- EGF, epidermal growth factor
- EMT
- EMT, epithelial mesenchymal transition
- GM, gingival mucosal
- HPV, human papillomavirus
- IAP, inhibitor of apoptosis protein
- Immortalized gingival keratinocytes
- Intermediate filaments
- Invasion
- MEF2, myocyte enhancing factor 2
- MMP, matrix metalloproteinases
- Nox, NAD(P)H oxidase
- PMA, 12-O- tetradecanoylphorbol-13-acetate
- ROS, reactive oxygen species
- Spindle cells
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Apsorn Sattayakhom
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wanida Ittarat
- Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Steinritz D, Elischer A, Balszuweit F, Gonder S, Heinrich A, Bloch W, Thiermann H, Kehe K. Sulphur mustard induces time- and concentration-dependent regulation of NO-synthesizing enzymes. Toxicol Lett 2009; 188:263-9. [DOI: 10.1016/j.toxlet.2009.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/02/2009] [Accepted: 04/20/2009] [Indexed: 02/07/2023]
|
7
|
Discrimination of epithelium-like and fibroblast-like phenotypes derived from ethanol-treated immortalised human gingival keratinocytes in epithelial equivalents. Cell Tissue Res 2008; 332:57-71. [PMID: 18188601 DOI: 10.1007/s00441-007-0551-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
Ethanol treatment of immortalised human gingival keratinocytes (IHGK) yields in an epithelium-like (EPI) and fibroblast-like (FIB) phenotype. With respect to the stratified gingival epithelium, putative structural and molecular differences assigning cells to these phenotypes have not, to date, been analysed in a three-dimensional tissue/epithelial context. Therefore, we generated epithelial equivalents (EEs) in organotypic co-cultures of IHGK, EPI and FIB cells for 1 and 2 weeks and conducted protein and gene expression studies on the EEs for epithelial biomarkers including keratin K14, integrin subunits alpha6 and beta1, E-cadherin, and mesenchymal vimentin. As in the EEs of IHGK and EPI, indirect immunofluorescence revealed continuous expression of beta1 integrin in EEs of FIB cells. However, FIB cells exhibited a significant down-regulation in K14 and integrin alpha6 protein and a loss of E-cadherin at week 2, whereas vimentin was increased. FIB EEs were devoid of transcripts for E-cadherin at both time points, although transcription of the other genes remained constant in all phenotypes. Thus, the FIB phenotype exhibited a poor epithelial structure coinciding with disturbances in the expression of epithelial biomarkers and the persistence of mesenchymal vimentin. Transcription analysis revealed post-transcriptional regulation of vimentin in IHGK and EPI and of K14 and alpha6 in FIB cells. Our findings indicate that differences in the epithelial integrity and expression of molecules in EEs allow for the discrimination of EPI and FIB cells. This suggests that FIB cells share features of epithelial-mesenchymal transition and reflect a more progressive stage in epithelial cell transformation.
Collapse
|