1
|
Poletaeva DA, Soldatova YV, Smolina AV, Savushkin MA, Klimanova EN, Sanina NA, Faingold II. The Influence of Cationic Nitrosyl Iron Complex with Penicillamine Ligands on Model Membranes, Membrane-Bound Enzymes and Lipid Peroxidation. MEMBRANES 2022; 12:membranes12111088. [PMID: 36363643 PMCID: PMC9694463 DOI: 10.3390/membranes12111088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
This paper shows the biological effects of cationic binuclear tetranitrosyl iron complex with penicillamine ligands (TNIC-PA). Interaction with a model membrane was assessed using a fluorescent probes technique. Antioxidant activity was studied using a thiobarbituric acid reactive species assay (TBARS) and a chemiluminescence assay. The catalytic activity of monoamine oxidase (MAO) was determined by measuring liberation of ammonia. Antiglycation activity was determined fluometrically by thermal glycation of albumine by D-glucose. The higher values of Stern-Volmer constants (KSV) obtained for the pyrene located in hydrophobic regions (3.9 × 104 M-1) compared to KSV obtained for eosin Y located in the polar headgroup region (0.9 × 104 M-1) confirms that TNIC-PA molecules prefer to be located in the hydrophobic acyl chain region, close to the glycerol group of lipid molecules. TNIC-PA effectively inhibited the process of spontaneous lipid peroxidation, due to additive contributions from releasing NO and penicillamine ligand (IC50 = 21.4 µM) and quenched luminol chemiluminescence (IC50 = 3.6 μM). High activity of TNIC-PA in both tests allows us to assume a significant role of its radical-scavenging activity in the realization of antioxidant activity. It was shown that TNIC-PA (50-1000 μM) selectively inhibits the membrane-bound enzyme MAO-A, a major source of ROS in the heart. In addition, TNIC-PA is an effective inhibitor of non-enzymatic protein glycation. Thus, the evaluated biological effects of TNIC-PA open up the possibility of its practical application in chemotherapy for socially significant diseases, especially cardiovascular diseases.
Collapse
Affiliation(s)
- Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Anastasiya V. Smolina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Maxim A. Savushkin
- Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, 1142432 Moscow, Russia
| | - Elena N. Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Nataliya A. Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 1142432 Mytishchy, Russia
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| |
Collapse
|
2
|
Features of the decomposition of the nitrosyl iron complex with thiourea ligands under aerobic conditions: experiment and kinetic and quantum chemical modeling. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Faingold II, Poletaeva DA, Soldatova YV, Smolina AV, Pokidova OV, Kulikov AV, Sanina NA, Kotelnikova RA. Effects of albumin-bound nitrosyl iron complex with thiosulfate ligands on lipid peroxidation and activities of mitochondrial enzymes in vitro. Nitric Oxide 2021; 117:46-52. [PMID: 34678508 DOI: 10.1016/j.niox.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO) mediates diverse physiological processes in living organisms. Small molecular NO donors usually lack stability and have a short half-life in human tissues, limiting the therapeutic application. The anionic tetranitrosyl iron complex with thiosulfate ligands (TNIC) is one of the most promising NO donors. This study shows that bovine serum albumin (BSA) can effectively stabilize the TNIC complex under aerobic (physiological) conditions, which contributes to its prolonged action as NO donor. Our results demonstrated that TNIC-BSA inhibits formation of TBARS - standard biomarker for the lipid peroxidation induced oxidative stress. Also, it was found that TNIC-BSA inhibits the catalytic activity of mitochondrial membrane-bound enzymes: cytochrome c oxidase and monoamine oxidase A. Together, these results demonstrate that, stabilization of TNIC with BSA opens up the possibility of its practical application in chemotherapy of socially significant diseases.
Collapse
Affiliation(s)
- I I Faingold
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - D A Poletaeva
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation.
| | - Yu V Soldatova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - A V Smolina
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - O V Pokidova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - A V Kulikov
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - N A Sanina
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation; Medicinal Chemistry Research and Education Center, Moscow Region State University, Mytishchy, Moscow region, Russian Federation
| | - R A Kotelnikova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
4
|
Sanina NA, Isaeva YA, Utenyshev AN, Dorovatovskii PV, Ovanesyan NS, Emel'yanova NS, Pokidova OV, Tat'yanenko LV, Sulimenkov IV, Kotel'nikov AI, Aldoshin SM. Synthesis, structure, and PDE inhibiting activity of the anionic DNIC with 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiolyl, the nitric oxide donor. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Vanin AF. Dinitrosyl Iron Complexes with Thiol-Containing Ligands Can Suppress Viral Infections as Donors of the Nitrosonium Cation (Hypothesis). Biophysics (Nagoya-shi) 2020; 65:698-702. [PMID: 33100351 PMCID: PMC7569104 DOI: 10.1134/s0006350920040260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
The appropriateness of verification of the possible antiviral effect of dinitrosyl iron complexes with thiol-containing ligands as donors of nitrosonium cations (NO+) is argued. There is reason to hope that treatment of the human respiratory tract and lungs with sprayed solutions of dinitrosyl iron complexes with glutathione or N-acetylcysteine (NAC) as NO+ donors during COVID-19 infection can initiate S-nitrosylation of cellular proteases and thereby suppress viral infection.
Collapse
Affiliation(s)
- A. F. Vanin
- Semenov Institute of Chemical Physics, 119334 Moscow, Russia
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Decomposition of the binuclear nitrosyl iron complex with thiosulfato ligands in aqueous solutions: Experimental and theoretical study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Pokidova O, Rudneva T, Tretyakov B, Kotelnikova R, Kotelnikov A, Aldoshin S. Influence of hemoglobin and albumin on the NO donation effect of tetranitrosyl iron complex with thiosulfate. Nitric Oxide 2020; 94:69-72. [PMID: 31678147 DOI: 10.1016/j.niox.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The effects of deoxyhemoglobin (Hb) and albumin on the NO-donor activity of the anionic tetranitrosyl iron complex with thiosulfate ligands (1) were studied for the first time. It was shown that Hb significantly stabilizes complex 1; in its presence, NO generation from the complex proceeds at a noticeably slower rate. A similar effect is observed when complex 1 is bound to albumin, in which case complex 1 decomposes 27 times slower than in the absence of albumin in the solution. The observed effects provide a prolonged action of complex 1 as NO-donor, which may enhance its potential pharmacological efficacy.
Collapse
Affiliation(s)
- Olesya Pokidova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, 142432, Russian Federation.
| | - Tatiana Rudneva
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Bogdan Tretyakov
- Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Raisa Kotelnikova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Alexander Kotelnikov
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, 142432, Russian Federation; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Sergey Aldoshin
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, 142432, Russian Federation; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| |
Collapse
|
8
|
Pokidova ОV, Luzhkov VB, Emel'yanova NS, Krapivin VB, Kotelnikov AI, Sanina NA, Aldoshin SM. Effect of albumin on the transformation of dinitrosyl iron complexes with thiourea ligands. Dalton Trans 2020; 49:12674-12685. [DOI: 10.1039/d0dt02452j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BSA binds the Fe(NO)2+ fragment of DNIC and multiple molecules of [Fe(SC(NH2)2)2(NO)2]+ that prolongs NO donation by this DNIC.
Collapse
Affiliation(s)
- Оlesya V. Pokidova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Victor B. Luzhkov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Nina S. Emel'yanova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Vladimir B. Krapivin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Alexander I. Kotelnikov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Natalia A. Sanina
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| |
Collapse
|
9
|
Pokidova ОV, Emel’yanova NS, Psikha BL, Sanina NA, Kulikov AV, Kotel’nikov AI, Aldoshin SM. Transformation of mononuclear dinitrosyl iron complex (DNIC) with thiourea in glutathione aqueous solution. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Rudneva TN, Zhukova OS, Shilov GV, Chikileva IO, Kisilevskii MV, Sanina NA, Aldoshin SM. Synthesis, structure and antitumor activity of the binuclear tetranitrosyl iron complex with 2-mercaptobenzthiazole – the nitric oxide donor (NO). J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1583331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tatiana N. Rudneva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Olga S. Zhukova
- N.N. Blokhin Cancer Research Center, Russian Ministry of Health, Moscow, Russia
| | - Gennady V. Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Irina O. Chikileva
- N.N. Blokhin Cancer Research Center, Russian Ministry of Health, Moscow, Russia
| | | | - Nataliya A. Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
11
|
Hsiao HY, Chung CW, Santos JH, Villaflores OB, Lu TT. Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Trans 2019; 48:9431-9453. [DOI: 10.1039/c9dt00777f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ubiquitous physiology of nitric oxide enables the bioinorganic engineering of [Fe(NO)2]-containing and NO-delivery scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering
- Chang Gung Memorial Hospital
- Taoyuan
- Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | | | - Oliver B. Villaflores
- Department of Biochemistry
- Faculty of Pharmacy
- University of Santo Tomas
- Manila
- Philippines
| | - Tsai-Te Lu
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
12
|
Lu TT, Wang YM, Hung CH, Chiou SJ, Liaw WF. Bioinorganic Chemistry of the Natural [Fe(NO)2] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorg Chem 2018; 57:12425-12443. [DOI: 10.1021/acs.inorgchem.8b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yun-Ming Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan
| | | | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | | |
Collapse
|
13
|
Tatyanenko LV, Shmatko NY, Sanina NA, Dobrokhotova OV, Pikhteleva IY, Kotel'nikov AI, Aldoshin SM. Effects of Nitrosyl Iron Complexes with Thiocarbamide and Its Aliphatic Derivatives on Activities of Ca 2+-ATPase of Sarcoplasmic Reticulum and cGMP Phosphodiesterase. Bull Exp Biol Med 2017; 163:54-56. [PMID: 28580521 DOI: 10.1007/s10517-017-3736-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/28/2022]
Abstract
We studied the effects of water-soluble cationic dinitrosyl iron complexes with thiocarbamide and its aliphatic derivatives, new synthetic analogs of natural NO donors, active centers of nitrosyl [1Fe-2S]proteins, on activities of Ca2+-ATPase of sarcoplasmic reticulum and cGMP phosphodiesterase. Nitrosyl iron complexes [Fe(C3N2H8S)Cl(NO)2]0[Fe(NO)2(C3N2H8S)2]+Cl- (I), [Fe(SC(N(CH3)2)2(NO)2]Cl (II), [Fe(SC(NH2)2)2(NO)2Cl×H2O (III), and [Fe(SC(NH2)2)2(NO)2]2SO4×H2O (IV) in a concentration of 10-4 M completely inhibited the transporting and hydrolytic functions of Ca2+-ATPase. In a concentration of 10-5 M, they inhibited active Ca2+ transport by 57±6, 75±8, 80±8, and 85±9% and ATP hydrolysis by 0, 40±4, 48±5, and 38±4%, respectively. Complex II reversibly and noncompetitively inhibited the hydrolytic function of Ca2+-ATPase (Ki=1.7×10-6 M). All the studied iron-sulphur complexes in a concentration of 10-4 M inhibited cGMP phosphodiesterase function. These data suggest that the studied complexes can exhibit antimetastatic, antiaggregation, vasodilatatory, and antihypertensive activities.
Collapse
Affiliation(s)
- L V Tatyanenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - N Yu Shmatko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - N A Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - O V Dobrokhotova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - I Yu Pikhteleva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia.
| | - A I Kotel'nikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - S M Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| |
Collapse
|
14
|
Pokidova OV, Emel´yanova NS, Shkondina NI, Kotel´nikov AI, Syrtsova LA, Sanina NA, Aldoshin SM. Features of the decomposition of the neutral nitrosyl iron complexes with aryl-containing thiolate ligands in various solvents. Reaction with glutathione. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1813-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Tsikas D, Böhmer A. S -Transnitrosation reactions of hydrogen sulfide (H 2 S/HS − /S 2− ) with S -nitrosated cysteinyl thiols in phosphate buffer of pH 7.4: Results and review of the literature. Nitric Oxide 2017; 65:22-36. [DOI: 10.1016/j.niox.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|
16
|
|
17
|
Experimental and quantum chemical modeling of the influence of the pH of the medium on the NO-donor activity of the mononuclear nitrosyl iron complex [Fe(SC(NH2)2)2(NO)2]Сl•H2O. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1162-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Martusevich AK, Soloveva AG, Peretyagin SP, Vanin AF. A comparative analysis of the effects of free and bound NO on Pro- and antioxidant systems of the blood. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Quantum chemical approaches to the explanation of differences in NO-donor activity of iron-sulfur nitrosyl complexes. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0391-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Influence of ligand lipophilicity on the NO-donating ability of the binuclear tetranitrosyl iron complexes in an erythrocyte suspension. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0694-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Emel’yanova NS, Sanina NA, Knyaz’kina EV, Krivenko AG, Manzhos RA, Aldoshin SM. Quantum chemical modeling of the effect of the nature of a μ-SCN-type ligand on the redox properties of iron nitrosyl complexes. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Reversible dissociation and ligand-glutathione exchange reaction in binuclear cationic tetranitrosyl iron complex with penicillamine. Bioinorg Chem Appl 2014; 2014:641407. [PMID: 24790592 PMCID: PMC3984828 DOI: 10.1155/2014/641407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/15/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I) k1 = (4.6 ± 0.1)·10−3 s−1 and the elimination rate constant of the penicillamine ligand k2 = (1.8 ± 0.2)·10−3 s−1 at 25°C in 0.05 M phosphate buffer, pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS− during decomposition of 1.5·10−4 M (I) in the presence of 10−3 M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity.
Collapse
|
23
|
Quantum chemical modeling of ligand substitution in cationic nitrosyl iron complexes. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Sanina NA, Krivenko AG, Manzhos RA, Emel'yanova NS, Kozub GI, Korchagin DV, Shilov GV, Kondrat'eva TA, Ovanesyan NS, Aldoshin SM. Influence of aromatic ligand on the redox activity of neutral binuclear tetranitrosyl iron complexes [Fe2(μ-SR)2(NO)4]: experiments and quantum-chemical modeling. NEW J CHEM 2014. [DOI: 10.1039/c3nj00704a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Syrtsova LA, Sanina NA, Kabachkov EN, Shkondina NI, Kotelnikov AI, Aldoshin SM. Exchange of cysteamine, thiol ligand in binuclear cationic tetranitrosyl iron complex, for glutathione. RSC Adv 2014. [DOI: 10.1039/c4ra01766h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper describes the comparative study of the decomposition of two iron nitrosyl complexes (NICs) with a cysteamine thiolate ligand {Fe2[S(CH2)2NH3]2(NO)4}SO4·2.5H2O (I) and a glutathione (GSH)-ligand, [Fe2(SC10H17N3O6)2(NO)4]SO4·2H2O (II), which spontaneously evolve NO in aqueous medium.
Collapse
Affiliation(s)
- L. A. Syrtsova
- Department of Kinetics of Chemical and Biological Processes
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- 142432 Chernogolovka, Russian Federation
| | - N. A. Sanina
- Department of Structure of Matter
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- 142432 Chernogolovka, Russian Federation
| | - E. N. Kabachkov
- Department of functional inorganic materials
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- 142432 Chernogolovka, Russian Federation
| | - N. I. Shkondina
- Department of Kinetics of Chemical and Biological Processes
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- 142432 Chernogolovka, Russian Federation
| | - A. I. Kotelnikov
- Department of Kinetics of Chemical and Biological Processes
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- 142432 Chernogolovka, Russian Federation
| | - S. M. Aldoshin
- Department of Structure of Matter
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- 142432 Chernogolovka, Russian Federation
| |
Collapse
|
26
|
Revealing of the cation-binding sites on the surface of hemoglobin in its reaction with the NO donor, the nitrosyl iron complex {Fe2[S(CH2)2NH3]2(NO)4}SO4·2.5H2O. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0330-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Redox properties of [Fe2(SC6H5)2(NO)4]: an experimental study and quantum chemical modeling. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0259-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Vanin AF, Borodulin RR, Kubrina LN, Mikoyan VD, Burbaev DS. Physicochemical features of dinitrosyl iron complexes with natural thiol-containing ligands underlying the biological activities of these complexes. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers. NITROSYL COMPLEXES IN INORGANIC CHEMISTRY, BIOCHEMISTRY AND MEDICINE II 2013. [DOI: 10.1007/430_2013_117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Structure and properties of iron nitrosyl complexes with functionalized sulfur-containing ligands. Russ Chem Bull 2012. [DOI: 10.1007/s11172-011-0192-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Vanin AF, Burbaev DS. Electronic and spatial structures of water-soluble dinitrosyl iron complexes with thiol-containing ligands underlying their ability to act as nitric oxide and nitrosonium ion donors. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2012; 2011:878236. [PMID: 22505886 PMCID: PMC3306989 DOI: 10.1155/2011/878236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022]
Abstract
The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe(+)(NO(+))(2)] core ({Fe(NO)(2)}(7) according to the Enemark-Feltham classification). Similarly, the {(RS(-))(2)Fe(+)(NO(+))(2)}(+) structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d(7) electron configuration of the iron atom and predominant localization of the unpaired electron on MO(d(z2)) and the square planar structure of M-DNIC. On the other side, the formation of molecular orbitals of M-DNIC including orbitals of the iron atom, thiolate and nitrosyl ligands results in a transfer of electron density from sulfur atoms to the iron atom and nitrosyl ligands. Under these conditions, the positive charge on the nitrosyl ligands diminishes appreciably, the interaction of the ligands with hydroxyl ions or with thiols slows down and the hydrolysis of nitrosyl ligands and the S-nitrosating effect of the latter are not manifested. Most probably, the S-nitrosating effect of nitrosyl ligands is a result of weak binding of thiolate ligands to the iron atom under conditions favoring destabilization of M-DNIC.
Collapse
Affiliation(s)
- Anatoly F Vanin
- N. N. Semyonov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia
| | | |
Collapse
|
32
|
Effects of nitrosyl complexes of iron with functional S-ligands on the activity of hydrolytic enzymes. Pharm Chem J 2012. [DOI: 10.1007/s11094-012-0696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Lewandowska H, Kalinowska M, Brzóska K, Wójciuk K, Wójciuk G, Kruszewski M. Nitrosyl iron complexes--synthesis, structure and biology. Dalton Trans 2011; 40:8273-89. [PMID: 21643591 DOI: 10.1039/c0dt01244k] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nitrosyl complexes of iron are formed in living species in the presence of nitric oxide. They are considered a form in which NO can be stored and stabilized within a living cell. Upon entering a topic in bioinorganic chemistry the researcher faces a wide spectrum of issues concerning synthetic methods, the structure and chemical properties of the complex on the one hand, and its biological implications on the other. The aim of this review is to present the newest knowledge on nitrosyl iron complexes, summarizing the issues that are important for understanding the nature of nitrosyl iron complexes, their possible interactions, behavior in vitro and in vivo, handling of the preparations etc. in response to the growing interest in these compounds. Herein we focus mostly on the dinitrosyl iron complexes (DNICs) due to their prevailing occurrence in NO-treated biological samples. This article reviews recent knowledge on the structure, chemical properties and biological action of DNICs and some mononitrosyls of heme proteins. Synthetic methods are also briefly reviewed.
Collapse
Affiliation(s)
- Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, 16 Dorodna Str., 03-195, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
34
|
Syrtsova LA, Sanina NA, Psikha BL, Kulikov AV, Chernyak AV, Shkondina NI, Rudneva TN, Shaposhnikova OV, Kotel’nikov AI, Aldoshin SM. Effect of the solvent on the hydrolysis of the iron nitrosyl complex {Fe2[S(CH2)2NH3]2(NO)4}SO4·2.5H2O: spectroscopic and kinetic investigations of its monomer and dimer forms. Russ Chem Bull 2011. [DOI: 10.1007/s11172-011-0179-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Effect of hemoglobin on the NO-donor ability of μ2-S-bis(pyrimidine-2-thiolato)tetranitrosyldiiron. Russ Chem Bull 2011. [DOI: 10.1007/s11172-010-0380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Kinetic regularities of erythrocyte hemolysis and hemoglobin oxidation under the action of sulfur-nitrosyl iron complexes as nitric oxide donors. Russ Chem Bull 2011. [DOI: 10.1007/s11172-010-0381-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Sanina NA, Korchagin DV, Shilov GV, Kulikov AV, Shestakov AF, Sulimenkov IV, Aldoshin SM. Structures of bis(1-methyltetrazole-5-thiolato)(tetranitrosyl)diiron and its intermediates in solutions. RUSS J COORD CHEM+ 2010. [DOI: 10.1134/s107032841012002x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Ferrocytochrome c and deoxyhemoglobin in the reaction with the iron cysteamine nitrosyl complex {Fe2[S(CH2)2NH3]2(NO)4}SO4·2.5H2O. Russ Chem Bull 2010. [DOI: 10.1007/s11172-010-0345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Reaction of ferricytochrome c with the iron nitrosyl complex {Fe2[S(CH2)2NH3]2(NO)4}SO4 • 2.5H2O. Russ Chem Bull 2010. [DOI: 10.1007/s11172-010-0279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Structure of the binuclear tetranitrosyl iron complexes with a pyrimidin-2-yl ligand of the μ2-S type and the pH effect on its NO-donor ability in aqueous solutions. Russ Chem Bull 2010. [DOI: 10.1007/s11172-009-0058-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Tatˈyanenko LV, Kotelˈnikov AI, Dobrokhotova OV, Saratovskikh EA, Sanina NA, Rudneva TN, Aldoshin SM. Effect of nitrosyl iron–sulfur complexes on the activity of hydrolytic enzymes. Pharm Chem J 2009. [DOI: 10.1007/s11094-009-0346-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Sanina NA, Syrtsova LA, Chudinova ES, Shkondina NI, Rudneva TN, Kotel’nikov AI, Aldoshin SM. Regularities in the stabilization by hemoglobin of binuclear iron complexes [Fe2(μ-N—C—SR)2(NO)4] containing benzimidazolylthiol and benzothiazolylthiol ligands. Russ Chem Bull 2009. [DOI: 10.1007/s11172-009-0057-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Sanina N, Roudneva T, Shilov G, Morgunov R, Ovanesyan N, Aldoshin S. Structure and properties of binuclear nitrosyl iron complex with benzimidazole-2-thiolyl. Dalton Trans 2009:1703-6. [DOI: 10.1039/b818443g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Formation of nitrosothiols by the reaction of different forms of hemoglobin with (tetranitrosyl)bis(pyrimidin-2-ylthio)diiron. Russ Chem Bull 2009. [DOI: 10.1007/s11172-009-0010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
A study of NO trafficking from dinitrosyl-iron complexes to the recombinant E. coli transcriptional factor SoxR. J Biol Inorg Chem 2008; 13:961-72. [PMID: 18449575 DOI: 10.1007/s00775-008-0383-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
SoxR is a transcriptional factor in Escherichia coli that induces the expression of SoxS to initiate the production of enzymes in response to oxidative stress. In addition to superoxide, SoxR is also sensitive to cellular NO to produce a protein-bound dinitrosyl-iron complex (DNIC) with a characteristic electron paramagnetic resonance (EPR) signal at g(av)=2.03. Toward developing a strategy for NO sensing based on this property of SoxR, we have overexpressed and purified the recombinant His-tagged SoxR protein. Upon treatment of the purified protein under anaerobic conditions with (1) NO solution, (2) S-nitrosothiol (RSNO), and (3) chemically synthesized low molecular weight DNICs (LMW-DNICs), we have observed enhancement of the EPR signal at g(av)=2.03 from the protein-bound DNICs over time, reflecting the redistribution of NO from the NO solution, RSNO and LMW-DNICs to the SoxR. We have exploited this NO exchange to investigate the kinetics and mechanisms of release and delivery of NO from various LMW-DNICs to an isopropyl-beta-D-thiogalactopyranoside-dependent SoxR expressed in E. coli cells. These experiments revealed that the NO from RSNO and LMW-DNICs could cross the biological membrane and enter the cytoplasm of the cell to form the SoxR protein-bound DNIC complex. For comparison, we have also studied the direct NO transfer from the LMW-DNICs to the SoxR protein in buffer. The NO transfer was found to be rapid. From the kinetic data derived, we showed that LMW-DNICs with bidentate thiolate ligands displayed greater stability in aqueous solution but exhibited more facile NO delivery to cytoplasmic SoxR in whole cells.
Collapse
|
46
|
Hemoglobin-stabilized tetranitrosyl binuclear iron complex with pyridine-2-yl in aqueous solutions. Russ Chem Bull 2007. [DOI: 10.1007/s11172-007-0114-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|