1
|
Markovic MD, Panic VV, Pjanovic RV. Polymeric Nanosystems: A Breakthrough Approach to Treating Inflammation and Inflammation Related Diseases. Biopolymers 2025; 116:e70012. [PMID: 40104970 DOI: 10.1002/bip.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Inflammation processes can cause mild to severe damage in the human body and can lead to a large number of inflammation-related diseases (IRD) such as cancer, neural, vascular, and pulmonary diseases. Limitations of anti-inflammatory drugs (AID) application are reflected in high therapeutic doses, toxicity, low bioavailability and solubility, side effects, etc. Polymeric nanosystems (PS) have been recognized as a safe and effective technology that is able to overcome these limitations by AID encapsulation and is able to answer to the specific demands of the IRD treatment. PS are attracting great attention due to their versatility, biocompatibility, low toxicity, fine-tuned properties, functionality, and ability for precise delivery of anti-inflammatory drugs to the targeted sites in the human body. This article offers an overview of three classes of polymeric nanosystems: a) dendrimers, b) polymeric micelles and polymeric nanoparticles, and c) polymeric filomicelles, as well as their properties, preparation, and application in IRD treatment. In the future, the number of PS formulations in clinical practice will certainly increase.
Collapse
Affiliation(s)
- Maja D Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna V Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Rada V Pjanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Rai SK, Ganeshan S, Mariappan R, Rajendran AP, Balasubramaniem A, Pugazhendhi A, Varalakshmi P. Mesoporous nanoparticles for the delivery of (9S,E)-8-ethyl-9-methylnonadec-6-en-3-one (EME): A study of anti-inflammatory and tumor suppressing potential in RAW 264.7, He La and HepG2 cell lines. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Inducible nitric oxide synthase gene polymorphisms are associated with a risk of nephritis in Henoch-Schönlein purpura children. Eur J Pediatr 2017; 176:1035-1045. [PMID: 28593405 DOI: 10.1007/s00431-017-2945-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Henoch-Schönlein purpura (HSP) is the most common form of systemic small-vessel vasculitis in children, and HSP nephritis (HSPN) is a major complication of HSP and is the primary cause of morbidity and mortality. Previous studies have suggested that inducible nitric oxide synthase (iNOS) may play an important role in the pathogenesis of HSP. In this study, we performed a detailed analysis to investigate the potential association between iNOS polymorphisms and the risk of HSP and the tendency for children with HSP to develop HSPN in a Chinese Han population. A promoter pentanucleotide repeat (CCTTT)n and 10 functional single-nucleotide polymorphisms (SNPs) from 532 healthy controls and 513 children with HSP were genotyped using the MassARRAY system and GeneScan. The results suggested that the allelic and genotypic frequencies of the rs3729508 polymorphism were nominally associated with susceptibility to HSP. In addition, there was a significant difference in the allelic distribution of the (CCTTT)12 repeats and rs2297518 between the HSP children with and without nephritis; the HSP children with nephritis exhibited a significantly higher frequency of the (CCTTT)12 repeats and A allele of rs2297518 than the HSP children without nephritis (P FDR = 0.033, OR = 1.624, 95% CI = 1.177-2.241 and P FDR = 0.030, OR = 1.660, 95% CI = 1.187-2.321, respectively). CONCLUSION Our results support that iNOS polymorphisms are associated with the risk of HSP and may strongly contribute to the genetic basis of individual differences in the progression to nephritis among children with HSP in the Chinese Han population. What is Known: • The etiology of HSP is unknown, but the genetic factors may play an important role in the pathogenesis of HSP. • iNOS could contribute to the development and clinical manifestations of HSP, and this has not been studied extensively so far. What is New: • Our results support that iNOS polymorphisms not only are associated with HSP risk but also strongly contribute to the genetic basis of individual differences in the progression of HSP to nephritis among Chinese Han children.
Collapse
|
4
|
Negi VS, Mariaselvam CM, Misra DP, Muralidharan N, Fortier C, Charron D, Krishnamoorthy R, Tamouza R. Polymorphisms in the promoter region of iNOS
predispose to rheumatoid arthritis in south Indian Tamils. Int J Immunogenet 2017; 44:114-121. [DOI: 10.1111/iji.12315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Affiliation(s)
- V. S. Negi
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
| | - C. M. Mariaselvam
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
- INSERM, UMRS, U1160; Saint Louis Hospital; Paris France
| | - D. P. Misra
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
| | - N. Muralidharan
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
| | - C. Fortier
- Jean Dausset laboratory of Immunology and Immunogenetics and LabExTransplantex; Saint Louis Hospital; Paris France
| | - D. Charron
- INSERM, UMRS, U1160; Saint Louis Hospital; Paris France
- Jean Dausset laboratory of Immunology and Immunogenetics and LabExTransplantex; Saint Louis Hospital; Paris France
| | | | - R. Tamouza
- INSERM, UMRS, U1160; Saint Louis Hospital; Paris France
- Jean Dausset laboratory of Immunology and Immunogenetics and LabExTransplantex; Saint Louis Hospital; Paris France
| |
Collapse
|
5
|
Sarnelli G, Grosso M, Palumbo I, Pesce M, D’Alessandro A, Zaninotto G, Annese V, Petruzzelli R, Izzo P, Sepulveres R, Bruzzese D, Esposito G, Cuomo R. Allele-specific transcriptional activity of the variable number of tandem repeats of the inducible nitric oxide synthase gene is associated with idiopathic achalasia. United European Gastroenterol J 2017; 5:200-207. [PMID: 28344787 PMCID: PMC5349359 DOI: 10.1177/2050640616648870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Polymorphisms of genes involved in the regulation of the immune response are risk factors for achalasia, but their contribution to disease pathogenesis is unknown. Nitric oxide is involved both in immune function and inhibitory neurotransmission. OBJECTIVE The objective of this article is to assess the association and the functional relevance of the CCTTT-inducible nitric oxide synthase (NOS2) gene promoter polymorphism in achalasia. METHODS Genomic DNA was isolated from 181 achalasia patients and 220 controls. Genotyping of the (CCTTT)n repeats was performed by PCR and capillary electrophoresis, and data analyzed by considering the frequency of the different alleles. HT29 cells were transfected with iNOS luciferase promoter-reporter plasmids containing different (CCTTT)n. RESULTS The alleles' distribution ranged from 7 to 18, with a peak frequency at 12 repeats. Analysis of the allele frequencies revealed that individuals carrying 10 and 13 CCTTT repeats were respectively less and more frequent in achalasia (OR 0.5, 95% CI 0.3-0.5 and OR 1.6, 95% CI 1-2.4, all p < 0.05). Long repeats were also significantly associated with an earlier onset of the disease (OR 1.69, 95% CI 1.13-2.53, p = 0.01). Transfection experiments revealed a similar allele-specific iNOS transcriptional activity. CONCLUSION The functional polymorphism (CCTTT) of NOS2 promoter is associated with achalasia, likely by an allele-specific modulation of nitric oxide production.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Gastroenterology Unit, Department of
Clinical Medicine and Surgery University Federico II, Naples, Italy
| | - Michela Grosso
- Department of Biochemistry and Medical
Biotechnology, University Federico II, Naples, Italy
| | - Ilaria Palumbo
- Gastroenterology Unit, Department of
Clinical Medicine and Surgery University Federico II, Naples, Italy
| | - Marcella Pesce
- Gastroenterology Unit, Department of
Clinical Medicine and Surgery University Federico II, Naples, Italy
| | - Alessandra D’Alessandro
- Gastroenterology Unit, Department of
Clinical Medicine and Surgery University Federico II, Naples, Italy
| | - Giovanni Zaninotto
- Imperial College-St Mary’s Hospital,
Department of Academic Surgery, London, UK
| | - Vito Annese
- Unit of Gastroenterology SOD2, Azienda
Ospedaliera Universitaria, Careggi, Firenze, Italy
| | - Raffaella Petruzzelli
- Department of Biochemistry and Medical
Biotechnology, University Federico II, Naples, Italy
| | - Paola Izzo
- Department of Biochemistry and Medical
Biotechnology, University Federico II, Naples, Italy
| | - Rossana Sepulveres
- Department of Biochemistry and Medical
Biotechnology, University Federico II, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University
Federico II, Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and
Pharmacology, “La Sapienza” University of Rome, Italy
| | - Rosario Cuomo
- Gastroenterology Unit, Department of
Clinical Medicine and Surgery University Federico II, Naples, Italy
| |
Collapse
|
6
|
Zeng JZ, Ma LF, Meng H, Yu HM, Zhang YK, Guo A. (5R)-5-hydroxytriptolide (LLDT-8) prevents collagen-induced arthritis through OPG/RANK/RANKL signaling in a rat model of rheumatoid arthritis. Exp Ther Med 2016; 12:3101-3106. [PMID: 27882124 DOI: 10.3892/etm.2016.3739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2016] [Indexed: 02/02/2023] Open
Abstract
(5R)-5-hydroxytriptolide (LLDT-8) extracts from Tripterygium have anti-inflammatory, antineoplastic and immunity adjustment functions. The present study used a collagen-induced arthritis (CIA) model to evaluate whether LLDT-8 prevents collagen-induced arthritis, and investigated the signaling underlying this. Male Sprague-Dawley rats were induced to generate CIA, mimicking rheumatoid arthritis (RA). The presence of arthritis was determined using RA progression scores. The inflammatory cytokines interleukin (IL)-1β, IL-6 and nuclear factor-κB were detected using enzyme-linked immunosorbent assay kits. Induced nitric oxide synthase (iNOS) and matrix metalloprotease (MMP)-13 protein expression were measured using western blot analysis. Lastly, reverse transcription-quantitative polymerase chain reaction was used to evaluate osteoprotegerin (OPG) and receptor activator of nuclear factor κB (RANK) gene expression. LLDT-8 improved RA progression scores and reduced the incidence and severity of CIA. Furthermore, LLDT-8 administration inhibited collagen-induced inflammation and iNOS protein expression in arthritic rats. The current data indicated that MMP-13 production was suppressed and OPG/RANKL expression was increased by LLDT-8 treatment in the arthritic rat. The present results suggest that LLDT-8 attenuates CIA through OPG/RANK/RANK ligand signaling in a rat model of RA.
Collapse
Affiliation(s)
- Ji-Zhou Zeng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China; Department of Orthopaedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Feng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hai Meng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hao-Miao Yu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ya-Kui Zhang
- Department of Orthopaedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
7
|
Chen F, Li YM, Yang LQ, Zhong CG, Zhuang ZX. Association of NOS2 and NOS3 gene polymorphisms with susceptibility to type 2 diabetes mellitus and diabetic nephropathy in the Chinese Han population. IUBMB Life 2016; 68:516-25. [PMID: 27192959 DOI: 10.1002/iub.1513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/20/2016] [Indexed: 11/10/2022]
Abstract
Inducible nitric oxide synthase (NOS2) and endothelial nitric oxide synthase (NOS3) gene play important roles in the susceptibility to type 2 diabetes mellitus (T2DM). The present study aims to detect the potential association of NOS2 and NOS3 gene polymorphisms with the susceptibility toT2DM and diabetic nephropathy (DN) in the Chinese Han population. Four hundred and ninety T2DM patients and 485 healthy controls were enrolled in this case-control study. The genotypes of NOS2 and NOS3 gene polymorphisms were analyzed by the polymerase chain reaction (PCR)-ligase detection reaction (LDR) method. Our data demonstrated that the NOS2 rs2779248 and NOS2 rs1137933 genetic polymorphisms were significantly associated with the increased susceptibility to T2DM in the heterozygote comparison, dominant model, and allele contrast; and NOS3 rs3918188 genetic polymorphism was significantly associated with the increased susceptibility to T2DM in the homozygote comparison and recessive model. The allele-C and genotype-TC of NOS2 rs2779248, allele-A and genotype-GA of NOS2 rs1137933 and genotype-AA of NOS3 rs3918188 genetic polymorphisms might be the risk factors for increasing the susceptibility to T2DM. And a significant haplotype effect of NOS2 rs10459953/C- rs1137933/G- rs2779248/T was found between T2DM cases and controls. Moreover, NOS3 rs1800783 polymorphism was significantly associated with the increased susceptibility to DN in the heterozygote comparison, recessive model and allele contrast. At last, a positive correlation of family history of diabetes with NOS3 rs11771443 polymorphism was found in DN. These preliminary findings indicate that the NOS2 rs2779248, NOS2 rs1137933, and NOS3 rs3918188 genetic polymorphisms are potentially related to the susceptibility to T2DM, and the rs1800783 polymorphism might be considered as genetic risk factors for diabetic nephropathy, and family history of diabetes was closely associated with rs11771443 polymorphism in DN, and the genetic variants might be used as molecular markers for evaluating the risk of T2DM and diabetic nephropathy. © 2016 IUBMB Life, 68(7):516-525, 2016.
Collapse
Affiliation(s)
- Feng Chen
- Department of Toxicology, XiangYa School of Public Health, Central South University, Changsha, Hunan, China.,Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China.,Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Mei Li
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lin-Qing Yang
- Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Cai-Gao Zhong
- Department of Toxicology, XiangYa School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhi-Xiong Zhuang
- Department of Toxicology, XiangYa School of Public Health, Central South University, Changsha, Hunan, China.,Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Messias-Reason IJT, van Tong H, Velavan TP. Analysis of polymorphic sites in the promoter of the nitric oxide synthase 2 gene in Brazilian patients with leprosy. Int J Immunogenet 2014; 41:231-5. [PMID: 24495190 DOI: 10.1111/iji.12108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 12/01/2022]
Abstract
Leprosy is one of the most neglected infectious tropical diseases of the skin and the nerves caused by the intracellular pathogen Mycobacterium leprae. The inducible NOS isoform encoded by NOS2A plays a vital role in host defence against bacterial infections. The functional promoter polymorphisms in NOS2A are associated with various autoimmune and infectious diseases. We investigated the association of NOS2A variants with progression of leprosy in a Brazilian cohort including 221 clinically classified patients and 103 unrelated healthy controls. We observed a novel variant ss528838018A/G in the promoter region at position -6558. The other functional variants were observed with low frequency of minor allele (<0.005). NOS2A promoter variant (-954G/C) was not observed in Brazilian populations, and the new observed promoter variant (ss528838018A/G) as well as other promoter variants were not associated with any clinical forms of leprosy in the Brazilian populations.
Collapse
Affiliation(s)
- I J T Messias-Reason
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
9
|
Islam MN, Ishita IJ, Jin SE, Choi RJ, Lee CM, Kim YS, Jung HA, Choi JS. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food Chem Toxicol 2013; 55:541-8. [PMID: 23402855 DOI: 10.1016/j.fct.2013.01.054] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Anti-inflammatory activity of Saccharina japonica and its active components was evaluated via in vitro inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression in RAW 264.7 murine macrophage cells. Since the methanolic extract of S. japonica showed strong anti-inflammatory activity, it was fractionated with several solvents. Among the fractions, the ethyl acetate fraction demonstrated the highest inhibition of LPS-induced NO production (IC50=25.32μg/mL), followed by the CH2Cl2 fraction (IC50=75.86μg/mL). Considering the yield and anti-inflammatory potential together, the CH2Cl2 fraction was selected for chromatographic separation to yield two active porphyrin derivatives, pheophorbide a and pheophytin a, together with an inactive fucoxanthin. In contrast to fucoxanthin, pheophorbide a and pheophytin a showed dose-dependent inhibition against LPS-induced NO production at nontoxic concentrations in RAW 264.7 cells. Both compounds also suppressed the expression of iNOS proteins, while they did not inhibit the COX-2 expression in LPS-stimulated macrophages. These results indicate that pheophorbide a and pheophytin a are two important candidates of S. japonica as anti-inflammatory agents which can inhibit the production of NO via inhibition of iNOS protein expression. Thus, these compounds hold great promise for use in the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Md Nurul Islam
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Jawed H, Anjum S, Awan SI, Simjee SU. Anti-arthritic effect of GN1, a novel synthetic analog of glucosamine, in the collagen-induced arthritis model in rats. Inflamm Res 2011; 60:1113-20. [PMID: 21874354 DOI: 10.1007/s00011-011-0375-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/18/2011] [Accepted: 08/14/2011] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Glucosamine is a naturally occurring amino monosaccharide that maintains the elasticity and strength of the cartilage tissues. It has been used to treat osteoarthritis in humans; however, in severe conditions of inflammation and pain, glucosamine alone is not enough, and it is important to improve its biological activity. Our research group has recently taken an interest in the synthetic manipulation of amino sugars to develop some efficient pharmacophores, e.g., β-D-glucosamine, to combat rheumatoid arthritis, and tested its anti-arthritic effects in the collagen-induced arthritis (CIA) model in rats. METHODS Arthritis was induced in female Sprague-Dawley rats by multiple intradermal injections of bovine type II collagen and challenged again with the same antigen preparation 7 days later. Arthritis was evaluated by arthritic score, body weight loss, paw volume measurement, and histological changes. RESULTS The animals in the arthritic control group showed a gradual decrease in their body weight and concurrent increase in the paw volumes compared to the normal control group. In contrast, increased hind paw swelling was significantly suppressed with no further noticeable reduction in body weight in the glucosamine (p < 0.05) and GN1-treated (p < 0.02) arthritic animals. Histopathological evaluation of isolated knee joints by grading system and classification of the stages in arthritic lesion development revealed suppression of the inflammatory changes in the GN1-treated animals. Moreover, both the pro-inflammatory markers C-reactive protein (CRP) and low-density lipoprotein (LDL) levels were found to be significantly decreased in animals treated with GN1 (p < 0.03 for CRP and p < 0.05 for LDL) compared to the arthritic control group. CONCLUSION These results suggest that GN1 has both anti-arthritic and anti-inflammatory properties. Its effects in the CIA model suggest that it could be useful in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Huma Jawed
- Pharmacology Unit, Lab. # 314, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | | | | |
Collapse
|
11
|
Hsieh IN, Chang ASY, Teng CM, Chen CC, Yang CR. Aciculatin inhibits lipopolysaccharide-mediated inducible nitric oxide synthase and cyclooxygenase-2 expression via suppressing NF-κB and JNK/p38 MAPK activation pathways. J Biomed Sci 2011; 18:28. [PMID: 21548916 PMCID: PMC3113733 DOI: 10.1186/1423-0127-18-28] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/06/2011] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS)-activated macrophages. METHODS We used nitrate and prostaglandin E2 (PGE2) assays to examine inhibitory effect of aciculatin on nitric oxide (NO) and PGE2 levels in LPS-activated mouse RAW264.7 macrophages and further investigated the mechanisms of aciculatin suppressed LPS-mediated iNOS/COX-2 expression by western blot, RT-PCR, reporter gene assay and confocal microscope analysis. RESULTS Aciculatin remarkably decreased the LPS (1 μg/mL)-induced mRNA and protein expression of iNOS and COX-2 as well as their downstream products, NO and PGE2 respectively, in a concentration-dependent manner (1-10 μM). Such inhibition was found, via immunoblot analyses, reporter gene assays, and confocal microscope observations that aciculatin not only acts through significant suppression of LPS-induced NF-κB activation, an effect highly correlated with its inhibitory effect on LPS-induced IκB kinase (IKK) activation, IκB degradation, NF-κB phosphorylation, nuclear translocation and binding of NF-κB to the κB motif of the iNOS and COX-2 promoters, but also suppressed phosphorylation of JNK/p38 mitogen-activated protein kinases (MAPKs). CONCLUSION Our results demonstrated that aciculatin exerts potent anti-inflammatory activity through its dual inhibitory effects on iNOS and COX-2 by regulating NF-κB and JNK/p38 MAPK pathways.
Collapse
Affiliation(s)
- I-Ni Hsieh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Potent anti-inflammatory effects of denbinobin mediated by dual inhibition of expression of inducible no synthase and cyclooxygenase 2. Shock 2011; 35:191-7. [PMID: 20661183 DOI: 10.1097/shk.0b013e3181f0e9a8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) have been suggested to play important roles in various inflammatory diseases. We explored the anti-inflammatory potential of a natural compound, denbinobin (5-hydroxy-3,7-dimethoxy-1,4-phenanthraquinone), by examining its effects on the expression and activity of iNOS and COX-2 in LPS-activated macrophages. Denbinobin markedly decreased the LPS (1 μg/mL)-induced increase in iNOS and COX-2 gene and protein expression, as well as levels of the downstream products NO and prostaglandin E2, in a concentration-dependent manner (0.3-3 μM). In clarifying the mechanisms involved, denbinobin was found not only to inhibit LPS-induced nuclear factor κB (NF-κB) activation, an effect highly correlated with its inhibitory effect on LPS-induced inhibitory κB kinase activation, inhibitory κB degradation, NF-κB phosphorylation, and binding of NF-κB to the κB motif of the iNOS and COX-2 promoters, but also suppressed phosphorylation of mitogen-activated protein kinases. Reporter gene assays and Western blotting revealed that denbinobin significantly suppressed NF-κB activation. Furthermore, denbinobin also downregulated the LPS-mediated CD14/toll-like receptor 4 complex level and TNF-α, IL-1β, and IL-10 mRNA expression. Our results demonstrate that denbinobin exerts potent anti-inflammatory activity, suggesting that it might provide a new therapeutic approach to inflammatory diseases.
Collapse
|