Chang CZ, Wu SC, Kwan AL, Hwang SL, Howng SL. Magnesium lithospermate B alleviates the production of endothelin-1 through an NO-dependent mechanism and reduces experimental vasospasm in rats.
Acta Neurochir (Wien) 2011;
153:2211-7. [PMID:
21833783 DOI:
10.1007/s00701-011-1082-6]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/22/2011] [Indexed: 01/10/2023]
Abstract
OBJECTIVE
Magnesium lithospermate B (MLB), a working extract from Salvia miltiorrhiza, was effective against coronary artery disease, ischemic stroke, and chronic renal disease. This study examined the effect of MLB on endothelin-1/endothelial nitric oxide synthase (eNOS) in a subarachnoid hemorrhage (SAH) animal model.
METHODS
A rodent double-hemorrhage model was employed. Animals were randomly assigned to five groups (sham, SAH only, vehicle, 10 mg/kg/day MLB treatment, and pretreatment groups). A radiolabeled NOS Assay Kit was used to detect eNOS. Serum and cerebrospinal fluid sampling for ET-1 (ELISA) was measured. The basilar arteries (BAs) were garnered and sliced, and their cross-sectional areas were determined. In addition, NOS inhibitor nitro-arginine methyl ester (L-NAME) was employed in the SAH+ MLB treatment groups.
RESULTS
Significant vasoconstriction was perceived in the SAH group (lumen patency: 44.6%, p < 0.01), but not in the MLB group (lumen patency: 89.3%). The ET-1 level was reduced in the MLP plus SAH group (34%, p < 0.01) when compared with the SAH groups (SAH only and vehicle). MLB dose-dependently increased the level of eNOS when compared with the vehicle plus SAH group. However, the administration of L-NAME reversed the expression of eNOS and vasoconstriction (lumen patency: 56.2%) in the MLB group.
CONCLUSION
The enhanced expression of eNOS and decreased ET-1 levels in the MLB groups may reflect its anti-spastic effect. In the study of NOS, L-NAME reversed MLB's anti-vasospastic effect. This finding lends credence to the hypothesis that MLB modulates ET-1 levels through a NOS-dependent mechanism in the pathogenesis of cerebral vasospasm following SAH.
Collapse