1
|
Aminizadeh S, Moslemizadeh AH, Sheibani S, Sedighi-Khovidak Z, Roholamini Z, Jafarinejad-Farsangi S, Kheirandish R, Sheibani V, Bashiri H. Preventive effect of MitoQ supplementation and endurance training on glioblastoma and its consequences: TLR4/CREB/ NF-κβ /IL-1β pathway and behaviors. Int Immunopharmacol 2025; 145:113756. [PMID: 39662270 DOI: 10.1016/j.intimp.2024.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE The present study investigated the preventive effect of MitoQ supplementation and endurance training (ET) on the TLR4/CREB/ NF-κβ signaling pathway, antioxidant indices, and behaviors in C6-induced glioblastoma (GBM) in rats. METHODS 60 male Wistar rats were randomly divided into five groups (n = 12); Sham, Tumor, MitoQ, ET, and MitoQ + ET. Rats in the training groups performed endurance training (5 days per week), and MitoQ at the dose of 250 µM/L daily was administered in drinking water for 8 weeks. At the end of the protocol, all groups except the sham group received 1*106 tumor cells /10 µl culture medium. Two weeks after tumor induction, behavioral tests were performed, and then brain tissue was collected for the histopathology, measurement of antioxidant and inflammatory factors, TLR4, NF-κB proteins, and TLR4, NF-κβ, CREB, IL-1ß, TNF-a, IL-10, Bax, Bcl-2, and Caspase-3 gene expression. RESULTS The increased level of TLR4 and NF-κβ protein expression in GBM rats decreased in the treatment groups. Gene expression of TLR4, NF-κβ, CREB, TNF-a, IL-10, and Bcl-2 increased in the tumor groups, and treatment groups decreased TLR4, NF-κB, Bcl-2, and CREB. In addition, social behaviors, balance, and memory were impaired in the tumor group, which combination group could improve these behaviors. CONCLUSION In sum, the preventive effects of MitoQ as a beneficial immune reactive agent and exercise training in rats with C6-induced glioblastoma may be mediated via modulating oxidative stress, inflammatory factors, and down-regulation of the expression of TLR4.
Collapse
Affiliation(s)
- Soheil Aminizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sara Sheibani
- Department of Behavioral and Molecular Neurobiology, Regensburg Center for Neuroscience, University of Regensburg, Regensburg, Germany
| | - Zahra Sedighi-Khovidak
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahrasadat Roholamini
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Reza Kheirandish
- Department of Pathology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Dinevska M, Widodo SS, Cook L, Stylli SS, Ramsay RG, Mantamadiotis T. CREB: A multifaceted transcriptional regulator of neural and immune function in CNS tumors. Brain Behav Immun 2024; 116:140-149. [PMID: 38070619 DOI: 10.1016/j.bbi.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Laura Cook
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Robert G Ramsay
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology and the Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Bouchard KV, Costin GE. Promoting New Approach Methodologies (NAMs) for research on skin color changes in response to environmental stress factors: tobacco and air pollution. FRONTIERS IN TOXICOLOGY 2023; 5:1256399. [PMID: 37886123 PMCID: PMC10598764 DOI: 10.3389/ftox.2023.1256399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023] Open
Abstract
Aging is one of the most dynamic biological processes in the human body and is known to carry significant impacts on individuals' self-esteem. Skin pigmentation is a highly heritable trait made possible by complex, strictly controlled cellular and molecular mechanisms. Genetic, environmental and endocrine factors contribute to the modulation of melanin's amount, type and distribution in the skin layers. One of the hallmarks of extrinsic skin aging induced by environmental stress factors is the alteration of the constitutive pigmentation pattern clinically defined as senile lentigines and/or melasma or other pigmentary dyschromias. The complexity of pollutants and tobacco smoke as environmental stress factors warrants a thorough understanding of the mechanisms by which they impact skin pigmentation through repeated and long-term exposure. Pre-clinical and clinical studies demonstrated that pollutants are known to induce reactive oxygen species (ROS) or inflammatory events that lead directly or indirectly to skin hyperpigmentation. Another mechanistic direction is provided by Aryl hydrocarbon Receptors (AhR) which were shown to mediate processes leading to skin hyperpigmentation in response to pollutants by regulation of melanogenic enzymes and transcription factors involved in melanin biosynthesis pathway. In this context, we will discuss a diverse range of New Approach Methodologies (NAMs) capable to provide mechanistic insights of the cellular and molecular pathways involved in the action of environmental stress factors on skin pigmentation and to support the design of raw ingredients and formulations intended to counter their impact and of any subsequently needed clinical studies.
Collapse
|
4
|
Chuang WH, Chou YT, Chen YH, Kuo TH, Liaw WF, Lu TT, Kao CF, Wang YM. Neuroprotective Effect of NO-Delivery Dinitrosyl Iron Complexes (DNICs) on Amyloid Pathology in the Alzheimer's Disease Cell Model. ACS Chem Neurosci 2023; 14:2922-2934. [PMID: 37533298 DOI: 10.1021/acschemneuro.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. β-amyloid1-42 (Aβ1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aβ aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aβ1-42. This study found that DNIC-COOH protected neuronal cells from Aβ-induced cytotoxicity, potentiated neuronal functions, and facilitated Aβ1-42 degradation through the NO-sGC-cGMP-AKT-GSK3β-CREB/MMP-9 pathway.
Collapse
Affiliation(s)
- Wen-Han Chuang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Ting Chou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ting-Han Kuo
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Department of Dentistry, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Moslemizadeh A, Nematollahi MH, Amiresmaili S, Faramarz S, Jafari E, Khaksari M, Rezaei N, Bashiri H, Kheirandish R. Combination therapy with interferon-gamma as a potential therapeutic medicine in rat's glioblastoma: A multi-mechanism evaluation. Life Sci 2022; 305:120744. [PMID: 35798069 DOI: 10.1016/j.lfs.2022.120744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study assessed the effects of single or combined administration of temozolomide (TMZ) and interferon-gamma (IFN-ᵞ) on anxiety-like behaviors, balance disorders, learning and memory, TNF-α, IL-10, some oxidant and antioxidants factors with investigating the toll-like receptor-4 (TLR4) and p-CREB signaling pathway in C6-induced glioblastoma of rats. METHODS 40 male Sprague-Dawley rats bearing intra-caudate nucleus (CN) culture medium or C6 inoculation were randomly divided into five groups as follows: Sham, Tumor, TMZ, IFN-ᵞ and a TMZ + IFN-ᵞ combination. The open-field test (OFT), elevated plus maze (EPM), rotarod, and passive avoidance test (PAT) were done on days 14-17. On day 17 after tumor implantation, brain tissues were extracted for histopathological evaluation. TNF-α, IL-10, SOD, GPX, TAC, MDA, the protein level of TLR4 and p-CREB was measured. RESULTS Combination therapy inhibited the growth of the tumor. Treatment groups alleviated tumor-induced anxiety-like behaviors and improved imbalance and memory impairment. SOD, GPX, and TAC decreased in the tumor group. The combination group augmented GPX and TAC. MDA decreased in treatment groups. TMZ, IFN-ᵞ reduced tumor-increased TNF-α and IL-10 level. The combination group declined TNF-α level in serum and IL-10 level in serum and brain. Glioblastoma induced significant upregulation of TLR4 and p-CREB in the brain which inhibited by IFN-ᵞ and TMZ+ IFN-ᵞ. CONCLUSION The beneficial effects of TMZ, IFN-ᵞ, and TMZ+ IFN-ᵞ on neurocognitive functioning of rats with C6-induced glioblastoma may be mediated via modulating oxidative stress, reduced cytokines, and the downregulation of expression of TLR4 and p-CREB. Combination treatment appears to be more effective than single treatment.
Collapse
Affiliation(s)
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sanaz Faramarz
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Kheirandish
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
6
|
Ahn Y, Lee EJ, Luo E, Choi J, Kim JY, Kim S, Kim SH, Bae YJ, Park S, Lee J, Oh SH. Particulate Matter Promotes Melanin Production through Endoplasmic Reticulum Stress‒Mediated IRE1α Signaling. J Invest Dermatol 2022; 142:1425-1434.e6. [PMID: 34678155 DOI: 10.1016/j.jid.2021.08.444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Particulate matter (PM) is believed to be related to cardiovascular and respiratory diseases. The skin is also known to be affected by PM exposure as a result of skin barrier dysfunction, cutaneous inflammation, and apoptotic cell death. Epidemiological studies have suggested that PM is related to pigment spots. Recently, diesel exhaust particles are reported to cause a tanning response mediated by oxidative stress. However, the direct effects of PM on melanogenesis and the related mechanisms have not yet been clarified. Our study showed that PM can increase melanin production in melanocyte, mouse skin, and human skin models. RNA-sequencing analyses of melanocytes revealed that the expressions of unfolded protein response molecules were increased after PM exposure. In particular, IRE1α signaling pathway, which was consistently upregulated, was related to PM-triggered melanogenesis. In addition, PM-induced melanogenesis was abrogated by an IRE1α inhibitor. Therefore, our findings corroborate previous findings in melanocytes and in mouse and human models and also illuminate the involvement of the IRE1α pathway as a mechanism of PM-induced melanogenesis.
Collapse
Affiliation(s)
- Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Enzhi Luo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Suho Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Se-Hwa Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, South Korea; Department of Medical Physics, University of Science and Technology, Daejeon, South Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Sims SG, Cisney RN, Lipscomb MM, Meares GP. The role of endoplasmic reticulum stress in astrocytes. Glia 2021; 70:5-19. [PMID: 34462963 PMCID: PMC9292588 DOI: 10.1002/glia.24082] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes are glial cells that support neurological function in the central nervous system (CNS), in part, by providing structural support for neuronal synapses and blood vessels, participating in electrical and chemical transmission, and providing trophic support via soluble factors. Dysregulation of astrocyte function contributes to neurological decline in CNS diseases. Neurological diseases are highly heterogeneous but share common features of cellular stress including the accumulation of misfolded proteins. Endoplasmic reticulum (ER) stress has been reported in nearly all neurological and neurodegenerative diseases. ER stress occurs when there is an accumulation of misfolded proteins in the ER lumen and the protein folding demand of the ER is overwhelmed. ER stress initiates the unfolded protein response (UPR) to restore homeostasis by abating protein translation and, if the cell is irreparably damaged, initiating apoptosis. Although protein aggregation and misfolding in neurological disease has been well described, cell-specific contributions of ER stress and the UPR in physiological and disease states are poorly understood. Recent work has revealed a role for active UPR signaling that may drive astrocytes toward a maladaptive phenotype in various model systems. In response to ER stress, astrocytes produce inflammatory mediators, have reduced trophic support, and can transmit ER stress to other cells. This review will discuss the current known contributions and consequences of activated UPR signaling in astrocytes.
Collapse
Affiliation(s)
- Savannah G Sims
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Rylee N Cisney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Marissa M Lipscomb
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia, USA.,Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA
| |
Collapse
|
8
|
Li X, Sun C, Chen J, Ma JF, Pan YH. ERK-CREB pathway is involved in HSPB8-mediated glioma cell growth and metastatic properties. Exp Mol Pathol 2021:104653. [PMID: 34043982 DOI: 10.1016/j.yexmp.2021.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/14/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the mechanism of HSPB8 (heat shock protein beta-8) in the growth and metastatic properties of glioma cells. METHODS HSPB8 expression in glioma tissue and cell was detected via Western blotting. Then, glioma U87 and U251 cell lines were divided into Mock group, Control siRNA group, HSPB8 siRNA-1 group and HSPB8 siRNA-2 group. Cell proliferation was detected using MTT assay, while its invasion, migration and apoptosis were determined by Transwell, wound-healing and flow cytometry, respectively. The expression of HSPB8 and ERK-CREB pathway-related molecules were also measured by Western blotting. Xenograft models were constructed on nude mice, and accordingly, the growth curve of subcutaneous xenograft was prepared. RESULTS In glioma tissues, HSPB8 expression was upregulated with the increasing grade of glioma. Besides, glioma cells in the HSPB8 siRNA-1 group and HSPB8 siRNA-2 group manifested the significant enhancement in apoptotic rates and reductions in its proliferation, migration and invasion compared to those in the Mock group, meanwhile, the expression of HSPB8, p-ERK1/2/ERK1/2 and p-CREB/CREB were downregulated. On the other hand, the tumor growth in the nude mice of Ad-HSPB8 shRNA-1 group and Ad-HSPB8 shRNA-2 group was retarded significantly, with an acute decrease in the tumor weight. CONCLUSION Silencing HSPB8 can inhibit the malignant features, while facilitate the apoptosis of glioma cells, with inactivation of ERK-CREB pathway.
Collapse
Affiliation(s)
- Xia Li
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Cui Sun
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jing Chen
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ji-Fen Ma
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yi-Heng Pan
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
9
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
10
|
Xu Z, Wang H, Wei S, Wang Z, Ji G. Inhibition of ER stress-related IRE1α/CREB/NLRP1 pathway promotes the apoptosis of human chronic myelogenous leukemia cell. Mol Immunol 2018; 101:377-385. [PMID: 30055408 DOI: 10.1016/j.molimm.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/15/2018] [Accepted: 07/01/2018] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress is induced in chronic myelogenous leukemia (CML) cells. As an important sensor of ER stress, inositol-requiring protein-1α (IRE1α) promotes the survival of acute myeloid leukemia. NLRP1 inflammasome activation promotes metastatic melanoma growth and that IRE1α can increase NLRP1 inflammasome gene expression. This study aimed to investigate the role and molecular mechanism of IRE1α in CML cell growth. We found that overexpression of IRE1α or NLRP1 significantly promoted the proliferation and decreased the apoptosis of CML cells, whereas downregulation of these two genes showed the opposite effects. 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, reduced the expression of IRE1α and NLRP1. IRE1α elevated NLRP1 expression via cAMP responsive element binding protein (CREB) phosphorylation. NLRP1 inflammasome was activated in CML cells and its activation partly reversed ER stress inhibitor-induced cell apoptosis. Furthermore, inhibition of IRE1α/NLRP1 pathway sensitized CML cells to imatinib-mediated apoptosis. Additionally, IRE1α expression was elevated and NLRP1 inflammasome was activated in primary cells from CML patients. Downregulation of IRE1α or NLRP1 suppressed the proliferation and elevated the apoptosis of primary CML cells. Collectively, this study demonstrated that the IRE1α/CREB/NLRP1 pathway contributes to the progression of CML and the development of imatinib resistance. Hence, targeting ER stress-related IRE1α expression or NLRP1 inflammasome activation may block CML development.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Hematology, Xinyang Central Hospital of Henan Province, Xinyang, Henan 464000, PR China
| | - Huirui Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Zhencheng Wang
- Department of Hematopathology, Zibo Central Hospital, Zibo, Shandong 255036, PR China
| | - Guanghou Ji
- Department of Clinical Laboratory, Sishui People's Hospital, Jining, Shandong 273200, PR China.
| |
Collapse
|
11
|
Santos LE, Ferreira ST. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Neuropharmacology 2017; 136:350-360. [PMID: 29129774 DOI: 10.1016/j.neuropharm.2017.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
While most often noted for its cognitive symptoms, Alzheimer's disease (AD) is, at its core, a disease of protein misfolding/aggregation, with an intriguing inflammatory component. Defective clearance and/or abnormal production of the amyloid-β peptide (Aβ), and its ensuing accumulation and aggregation, underlie two hallmark features of AD: brain accumulation of insoluble protein deposits known as amyloid or senile plaques, and buildup of soluble Aβ oligomers (AβOs), diffusible toxins linked to synapse dysfunction and memory impairment. In neurons, as in typical eukaryotic cells, the endoplasmic reticulum (ER) serves as a main compartment for the folding, maturation, trafficking and quality control of newly synthesized proteins. The ER lumen, a calcium-rich, oxidizing environment, provides favorable conditions for these physiological functions to occur. These conditions, however, also favor protein aggregation. Several stressors, including metabolic/nutrient stress and certain pathologies, may upset the ER homeostasis, e.g., by affecting calcium levels or by causing the accumulation of unfolded or misfolded proteins. Whatever the underlying cause, the result is what is commonly known as "ER stress". This, in turn, triggers a conserved cellular response mechanism known as the "unfolded protein response" (UPR). The UPR comprises three pathways involving transcriptional or translational regulators aimed at normalizing ER function, and each of them results in pro-inflammatory signaling. A positive feedback loop exists between ER stress and inflammation, with clear implications for neurodegeneration and AD. Here, we explore recent findings on the role of ER stress and the UPR in inflammatory processes leading to synapse failure and memory impairment in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Luis E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
12
|
Meng T, Cao Q, Lei P, Bush AI, Xiang Q, Su Z, He X, Rogers JT, Chiu IM, Zhang Q, Huang Y. Tat-haFGF 14-154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624220 PMCID: PMC5443968 DOI: 10.1016/j.omtn.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acid fibroblast growth factor (aFGF) has shown neuroprotection in Alzheimer’s disease (AD) models in previous studies, yet its mechanism is still uncertain. Here we report that the efficacy of Tat-haFGF14–154 is markedly increased when loaded cationic liposomes for intranasal delivery are intranasally administered to APP/PS1 mice. Our results demonstrated that liposomal Tat-haFGF14–154 treatment significantly ameliorated behavioral deficits, relieved brain Aβ burden, and increased the expression and activity of disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) in the brain. Tat-haFGF14–154 antagonized Aβ1–42-induced cell death and structural damage in rat primary neurons in an ADAM10-dependent manner, which, in turn, was promoted by the activation of XBP1 splicing and modulated by the PI3K-CREB pathway. Both knockdown of ADAM10 and inhibition of PI3K (LY294002) negated Tat-haFGF14–154 rescue. Thus, Tat-haFGF14–154 activates the IRE1α/XBP1 pathway of the unfolded protein response (UPR) against the endoplasmic reticulum (ER) stress induced by Aβ, and, subsequently, the nuclear translocation of spliced XBP1 (XBP1s) promotes transcription of ADAM10. These results highlight the important role of ADAM10 and its activation through the PI3K-CREB-IRE1α/XBP1 pathway as a key factor in the mechanism of neuroprotection for Tat-haFGF14–154.
Collapse
Affiliation(s)
- Tian Meng
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Qin Cao
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Peng Lei
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qi Xiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Xiang He
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, USA
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Qihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Santofimia-Castaño P, Izquierdo-Alvarez A, de la Casa-Resino I, Martinez-Ruiz A, Perez-Lopez M, Portilla JC, Salido GM, Gonzalez A. Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes. Toxicology 2016; 357-358:74-84. [PMID: 27282967 DOI: 10.1016/j.tox.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/08/2023]
Abstract
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function.
Collapse
Affiliation(s)
| | - Alicia Izquierdo-Alvarez
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | | | - Antonio Martinez-Ruiz
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | | | - Juan C Portilla
- Neurology Unit, San Pedro de Alcantara Hospital, 10003 Caceres, Spain
| | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Caceres, Spain
| | - Antonio Gonzalez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
14
|
Santofimia-Castaño P, Salido GM, González A. Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes. DNA Cell Biol 2013; 32:147-155. [PMID: 23496767 PMCID: PMC3624633 DOI: 10.1089/dna.2012.1939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/27/2023] Open
Abstract
The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca(2+) concentration ([Ca(2+)]c), the mitochondrial free-Ca(2+) concentration ([Ca(2+)]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca(2+)]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca(2+)]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function.
Collapse
|
15
|
Cho H, Wu M, Zhang L, Thompson R, Nath A, Chan C. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells. BMC SYSTEMS BIOLOGY 2013; 7:9. [PMID: 23339444 PMCID: PMC3557202 DOI: 10.1186/1752-0509-7-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022]
Abstract
Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum) stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4). To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2) cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1) palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase), PERK (PKR-like ER kinase), PKA (cyclic AMP (cAMP)-dependent protein kinase A) in a time dependent-manner, 2) both ATF4 and CREB1 (cAMP-responsive element-binding protein 1) interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3) CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin) signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemical Engineering and Materials Science, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
16
|
Yao S, Zong C, Zhang Y, Sang H, Yang M, Jiao P, Fang Y, Yang N, Song G, Qin S. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression. J Atheroscler Thromb 2012; 20:94-107. [PMID: 23037953 DOI: 10.5551/jat.13425] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. METHODS Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. RESULTS Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. CONCLUSION These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.
Collapse
Affiliation(s)
- Shutong Yao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim YH, Kwon HJ, Kim DS. Matrix metalloproteinase 9 (MMP-9)-dependent processing of βig-h3 protein regulates cell migration, invasion, and adhesion. J Biol Chem 2012; 287:38957-69. [PMID: 23019342 DOI: 10.1074/jbc.m112.357863] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell migration is critically involved in inflammation, cancer, and development. In this study, transforming growth factor-β-induced protein (βig-h3) was identified as a substrate of matrix metalloproteinase-9 (MMP-9) by site-directed mutagenesis. βig-h3 has two cleavage sites with the consensus sequence Pro-Xaa-Xaa-Hy-(Ser/Thr) (Hy is a hydrophobic amino acid) (PGSFT beginning at amino acid 135 and PPMGT beginning at amino acid 501). Using recombinant human βig-h3 and MMP-9, βig-h3 from βig-h3-transfected HEK293F cells, and MMP-9 from MMP-9-transfected HEK293F cells, human macrophages, and neutrophils, we found that MMP-9 proteolytically cleaves βig-h3. Cleavage leads to the loss of its adhesive property and its release from extracellular matrix proteins, collagen IV, and fibronectin. Spheroids formed by increased cell-cell interactions were observed in βig-h3-transfected HEK293F cells but not in vehicle-transfected HEK293F cells. In human glioma U87MG cells, MMP-9 constitutive overexpression resulted in endogenous βig-h3 cleavage. βig-h3 cleavage by MMP-9 led to increased cell invasion, and βig-h3 knockdown also resulted in increased cell invasion. The βig-h3 fragment cleaved by MMP-9 could bind to the surface of macrophages, and it may play a role as a peptide chemoattractant by inducing macrophage migration via focal adhesion kinase/Src-mediated signal activation. Thus, intact βig-h3 is responsible for cell migration inhibition, cell-cell contact, and cell-extracellular matrix interaction. Experimental evidence indicates that MMP-9-cleaved βig-h3 plays a role in MMP-9-mediated tumor cell and macrophage migration.
Collapse
Affiliation(s)
- Yeon Hyang Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | |
Collapse
|
18
|
The angiogenesis inhibitor vasostatin is regulated by neutrophil elastase-dependent cleavage of calreticulin in AML patients. Blood 2012; 120:2690-9. [PMID: 22915645 DOI: 10.1182/blood-2012-02-412759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.
Collapse
|
19
|
Mantamadiotis T, Papalexis N, Dworkin S. CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. Bioessays 2012; 34:293-300. [PMID: 22331586 DOI: 10.1002/bies.201100133] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This paper discusses the evidence for the role of CREB in neural stem/progenitor cell (NSPC) function and oncogenesis and how these functions may be important for the development and growth of brain tumours. The cyclic-AMP response element binding (CREB) protein has many roles in neurons, ranging from neuronal survival to higher order brain functions such as memory and drug addiction behaviours. Recent studies have revealed that CREB also has a role in NSPC survival, differentiation and proliferation. Recent work has shown that over-expression of CREB in transgenic animals can impart oncogenic properties on cells in various tissues and that aberrant CREB expression is associated with tumours in patients. It is the central position of CREB, downstream of key developmental and growth signalling pathways, which give CREB the ability to influence a spectrum of cell activities, such as cell survival, growth and differentiation in both normal and cancer cells.
Collapse
Affiliation(s)
- Theo Mantamadiotis
- Department of Pathology, The University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
20
|
Srinivasan K, Sharma SS. 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci 2011; 90:154-60. [PMID: 22075494 DOI: 10.1016/j.lfs.2011.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/12/2011] [Accepted: 10/24/2011] [Indexed: 12/19/2022]
Abstract
AIMS The role of nitric oxide (NO) and endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of cerebral ischemic/reperfusion (I/R) injury and diabetes. The aim of the study was to investigate the neuroprotective potential of 3-bromo-7-nitroindazole (3-BNI), a potent and selective neuronal nitric oxide synthase (nNOS) inhibitor against ER stress and focal cerebral I/R injury associated with comorbid type 2 diabetes in-vivo. MAIN METHODS Type 2 diabetes was induced by feeding high-fat diet and streptozotocin (35 mg/kg) treatment in rats. Focal cerebral ischemia was induced by 2h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Immunohistochemistry and western blotting methods were employed for the detection and expression of ER stress/apoptosis markers [78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)]. TUNEL assay for DNA fragmentation was also performed. KEY FINDINGS The diabetic rats subjected to cerebral I/R had prominent neurological damage and functional deficits compared with sham-operated rats. Massive DNA fragmentation was observed in ischemic penumbral region of diabetic brains. Concomitantly, the enhanced immunoreactivity and expression of ER stress/apoptosis markers were noticed. 3-BNI (30 mg/kg, i.p.) treatment significantly inhibited the cerebral infarct, edema volume and improved functional recovery of neurological deficits. The neuroprotection was further evident by lesser DNA fragmentation with a concomitant reduction of GRP78 and CHOP. SIGNIFICANCE The study demonstrates the neuroprotective potential of 3-BNI in diabetic stroke model which may be partly due to inhibition of ER stress pathway involving CHOP.
Collapse
Affiliation(s)
- Krishnamoorthy Srinivasan
- Molecular Neuropharmacology Laboratory, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, Punjab-160062, India
| | | |
Collapse
|
21
|
Sex differences play a role in cardiac endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis induced by pressure overload and thapsigargin. Cardiovasc Pathol 2011; 20:281-90. [DOI: 10.1016/j.carpath.2010.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 07/01/2010] [Accepted: 07/26/2010] [Indexed: 11/20/2022] Open
|