1
|
Locascio A, Annona G, Caccavale F, D'Aniello S, Agnisola C, Palumbo A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int J Mol Sci 2023; 24:11182. [PMID: 37446358 DOI: 10.3390/ijms241311182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
2
|
Cerra MC, Filice M, Caferro A, Mazza R, Gattuso A, Imbrogno S. Cardiac Hypoxia Tolerance in Fish: From Functional Responses to Cell Signals. Int J Mol Sci 2023; 24:ijms24021460. [PMID: 36674975 PMCID: PMC9866870 DOI: 10.3390/ijms24021460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Aquatic animals are increasingly challenged by O2 fluctuations as a result of global warming, as well as eutrophication processes. Teleost fish show important species-specific adaptability to O2 deprivation, moving from intolerance to a full tolerance of hypoxia and even anoxia. An example is provided by members of Cyprinidae which includes species that are amongst the most tolerant hypoxia/anoxia teleosts. Living at low water O2 requires the mandatory preservation of the cardiac function to support the metabolic and hemodynamic requirements of organ and tissues which sustain whole organism performance. A number of orchestrated events, from metabolism to behavior, converge to shape the heart response to the restricted availability of the gas, also limiting the potential damages for cells and tissues. In cyprinids, the heart is extraordinarily able to activate peculiar strategies of functional preservation. Accordingly, by using these teleosts as models of tolerance to low O2, we will synthesize and discuss literature data to describe the functional changes, and the major molecular events that allow the heart of these fish to sustain adaptability to O2 deprivation. By crossing the boundaries of basic research and environmental physiology, this information may be of interest also in a translational perspective, and in the context of conservative physiology, in which the output of the research is applicable to environmental management and decision making.
Collapse
|
3
|
An ACE2-Alamandine Axis Modulates the Cardiac Performance of the Goldfish Carassius auratus via the NOS/NO System. Antioxidants (Basel) 2022; 11:antiox11040764. [PMID: 35453449 PMCID: PMC9026556 DOI: 10.3390/antiox11040764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Alamandine is a peptide of the Renin Angiotensin System (RAS), either generated from Angiotensin A via the Angiotensin Converting Enzyme 2 (ACE2), or directly from Ang-(1-7). In mammals, it elicits cardioprotection via Mas-related G-protein-coupled receptor D (MrgD), and the NOS/NO system. In teleost fish, RAS is known to modulate heart performance. However, no information is available on the presence of a cardioactive ACE2/Alamandine axis. To fill this gap, we used the cyprinid teleost Carassius auratus (goldfish) for in silico and in vitro analyses. Via the NCBI Blast P suite we found that in cyprinids ace2 is phylogenetically detectable in a subcluster of proteins including ace2-like isoforms, and is correlated with a hypoxia-dependent pathway. By real-time PCR, Western Blotting, and HPLC, ACE2 and Alamandine were identified in goldfish heart and plasma, respectively. Both increased after chronic exposure to low O2 (2.6 mg O2 L-1). By using an ex-vivo working goldfish-heart preparation, we observed that in vitro administration of exogenous Alamandine dose-dependently stimulates myocardial contractility starting from 10-11 M. The effect that involved Mas-related receptors and PKA occurred via the NOS/NO system. This was shown by exposing the perfused heart to the NOS inhibitor L-NMMA (10-5 M) that abolished the cardiac effect of Alamandine and was supported by the increased expression of the phosphorylated NOS enzyme in the extract from goldfish heart exposed to 10-10 M Alamandine. Our data are the first to show that an ACE2/Alamandine axis is present in the goldfish C. auratus and, to elicit cardiac modulation, requires the obligatory involvement of the NOS/NO system.
Collapse
|
4
|
Sandra I, Verri T, Filice M, Barca A, Schiavone R, Gattuso A, Cerra MC. Shaping the cardiac response to hypoxia: NO and its partners in teleost fish. Curr Res Physiol 2022; 5:193-202. [PMID: 35434651 PMCID: PMC9010694 DOI: 10.1016/j.crphys.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The reduced availability of dissolved oxygen is a common stressor in aquatic habitats that affects the ability of the heart to ensure tissue oxygen supply. Among key signalling molecules activated during cardiac hypoxic stress, nitric oxide (NO) has emerged as a central player involved in the related adaptive responses. Here, we outline the role of the nitrergic control in modulating tolerance and adaptation of teleost heart to hypoxia, as well as major molecular players that participate in the complex NO network. The purpose is to provide a framework in which to depict how the heart deals with limitations in oxygen supply. In this perspective, defining the relational interplay between the multiple (sets of) proteins that, due to the gene duplication events that occurred during the teleost fish evolutive radiation, do operate in parallel with similar functions in the (different) heart (districts) and other body districts under low levels of oxygen supply, represents a next goal of the comparative research in teleost fish cardiac physiology. The flexibility of the teleost heart to O2 limitations is illustrated by using cyprinids as hypoxia tolerance models. Major molecular mediators of the teleost cardiac response are discussed with a focus on the nitrergic system. A comparative analysis of gene duplication highlights conserved targets which may orchestrate the cardiac response to hypoxia.
Collapse
|
5
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|
6
|
Carnevale C, Syme DA, Gamperl AK. Effects of hypoxic acclimation, muscle strain, and contraction frequency on nitric oxide-mediated myocardial performance in steelhead trout ( Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2021; 320:R588-R610. [PMID: 33501888 DOI: 10.1152/ajpregu.00014.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whether hypoxic acclimation influences nitric oxide (NO)-mediated control of fish cardiac function is not known. Thus, we measured the function/performance of myocardial strips from normoxic- and hypoxic-acclimated (40% air saturation; ∼8 kPa O2) trout at several frequencies (20-80 contractions·min-1) and two muscle strain amplitudes (8% and 14%) when exposed to increasing concentrations of the NO donor sodium nitroprusside (SNP) (10-9 to 10-4 M). Further, we examined the influence of 1) nitric oxide synthase (NOS) produced NO [by blocking NOS with 10-4 M NG-monomethyl-l-arginine (l-NMMA)] and 2) soluble guanylyl cyclase mediated, NOS-independent, NO effects (i.e., after blockade with 10-4 M ODQ), on myocardial contractility. Hypoxic acclimation increased twitch duration by 8%-10% and decreased mass-specific net power by ∼35%. However, hypoxic acclimation only had minor impacts on the effects of SNP and the two blockers on myocardial function. The most surprising finding of the current study was the degree to which contraction frequency and strain amplitude influenced NO-mediated effects on myocardial power. For example, at 8% strain, 10-4 SNP resulted in a decrease in net power of ∼30% at 20 min-1 but an increase of ∼20% at 80 min-1, and this effect was magnified at 14% strain. This research suggests that hypoxic acclimation has only minor effects on NO-mediated myocardial contractility in salmonids, is the first to report the high frequency- and strain-dependent nature of NO effects on myocardial contractility in fishes, and supports previous work showing that NO effects on the heart (myocardium) are finely tuned spatiotemporally.
Collapse
Affiliation(s)
- Christian Carnevale
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
7
|
Filice M, Mazza R, Leo S, Gattuso A, Cerra MC, Imbrogno S. The Hypoxia Tolerance of the Goldfish ( Carassius auratus) Heart: The NOS/NO System and Beyond. Antioxidants (Basel) 2020; 9:antiox9060555. [PMID: 32604810 PMCID: PMC7346152 DOI: 10.3390/antiox9060555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The extraordinary capacity of the goldfish (Carassius auratus) to increase its cardiac performance under acute hypoxia is crucial in ensuring adequate oxygen supply to tissues and organs. However, the underlying physiological mechanisms are not yet completely elucidated. By employing an ex vivo working heart preparation, we observed that the time-dependent enhancement of contractility, distinctive of the hypoxic goldfish heart, is abolished by the Nitric Oxide Synthase (NOS) antagonist L-NMMA, the Nitric Oxide (NO) scavenger PTIO, as well as by the PI3-kinase (PI3-K) and sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) pumps’ inhibition by Wortmannin and Thapsigargin, respectively. In goldfish hearts exposed to hypoxia, an ELISA test revealed no changes in cGMP levels, while Western Blotting analysis showed an enhanced expression of the phosphorylated protein kinase B (pAkt) and of the NADPH oxidase catalytic subunit Nox2 (gp91phox). A significant decrease of protein S-nitrosylation was observed by Biotin Switch assay in hypoxic hearts. Results suggest a role for a PI3-K/Akt-mediated activation of the NOS-dependent NO production, and SERCA2a pumps in the mechanisms conferring benefits to the goldfish heart under hypoxia. They also propose protein denitrosylation, and the possibility of nitration, as parallel intracellular events.
Collapse
|
8
|
The NOS/NO system in an example of extreme adaptation: The African lungfish. J Therm Biol 2020; 90:102594. [PMID: 32479389 DOI: 10.1016/j.jtherbio.2020.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
African dipnoi (lungfish) are aestivating fish and obligate air breathers that, throughout their complex life cycle, undergo remarkable morpho-functional organ readjustment from biochemical to morphological level. In the present review we summarize the changes of the NOS/NO (Nitric Oxide Synthase/Nitric Oxide) system occurring in lungs, gills, kidney, heart, and myotomal muscle of African lungfish of the genus Protopterus (P. dolloi and P. annectens), in relation to the switch from freshwater to aestivation, and vice-versa. In particular, the expression and localization patterns of NOS, and its protein partners Akt, Hsp-90 and HIF-1α, have been discussed, together with the apoptosis rate, evaluated by TUNEL technique. We hypothesize that all these molecular components are crucial in signalling transduction/integration networks induced by environmental challenges (temperature, dehydration, inactivity)experienced at the beginning, during, and at the end of the dry season.
Collapse
|
9
|
Imbrogno S, Filice M, Cerra MC. Exploring cardiac plasticity in teleost: the role of humoral modulation. Gen Comp Endocrinol 2019; 283:113236. [PMID: 31369729 DOI: 10.1016/j.ygcen.2019.113236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 12/01/2022]
Abstract
The fish heart represents an established natural model for evaluating basic mechanisms of the coordinated physiological reactions which maintain cardiac steady-state. This is due to its relatively simple design, but also to its multilevel morpho-functional flexibility which allows adequate responses to a variety of intrinsic (body size and shape, swimming performance, etc.), and extrinsic (temperature, salinity, oxygen level, water chemistry, etc.) factors related to the animal life style. Nowadays, although many gaps are still present, a huge literature is available about the mechanisms that fine-tune fish cardiac performance, particularly in relation to the influence exerted by substances possessing cardio-modulatory properties. Based on these premises, this review will provide an overview of the existing current knowledge regarding the humoral control of cardiac performance in fish. The role of both classic (i.e. catecholamines, angiotensin II and natriuretic peptides), and emerging cardioactive substances (i.e. the chromogranin-A-derived peptides vasostatins, catestatin and serpinin) will be illustrated and discussed. Moreover, an example of cardiomodulation elicited by peptides (e.g., nesfatin-1) associated to the regulation of feeding and metabolism will be provided. The picture will hopefully emphasize the complex circuits that sustain fish cardiac performance, also highliting the power of the teleost heart as an experimental model to deciphering mechanisms that could be difficult to explore in more elaborated cardiac morpho-functional designs.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Mariacristina Filice
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| |
Collapse
|
10
|
Imbrogno S, Filice M, Cerra MC, Gattuso A. NO, CO and H 2 S: What about gasotransmitters in fish and amphibian heart? Acta Physiol (Oxf) 2018; 223:e13035. [PMID: 29338122 DOI: 10.1111/apha.13035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
The gasotransmitters nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H2 S), long considered only toxicant, are produced in vivo during the catabolism of common biological molecules and are crucial for a large variety of physiological processes. Mounting evidence is emerging that in poikilotherm vertebrates, as in mammals, they modulate the basal performance of the heart and the response to stress challenges. In this review, we will focus on teleost fish and amphibians to highlight the evolutionary importance in vertebrates of the cardiac control elicited by NO, CO and H2 S, and the conservation of the intracellular cascades they activate. Although many gaps are still present due to discontinuous information, we will use examples obtained by studies from our and other laboratories to illustrate the complexity of the mechanisms that, by involving gasotransmitters, allow beat-to-beat, short-, medium- and long-term cardiac homoeostasis. By presenting the latest data, we will also provide a framework in which the peculiar morpho-functional arrangement of the teleost and amphibian heart can be considered as a reference tool to decipher cardiac regulatory networks which are difficult to explore using more conventional vertebrates, such as mammals.
Collapse
Affiliation(s)
- S. Imbrogno
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. Filice
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. C. Cerra
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - A. Gattuso
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| |
Collapse
|
11
|
Gattuso A, Garofalo F, Cerra MC, Imbrogno S. Hypoxia Tolerance in Teleosts: Implications of Cardiac Nitrosative Signals. Front Physiol 2018; 9:366. [PMID: 29706897 PMCID: PMC5906588 DOI: 10.3389/fphys.2018.00366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
Changes in environmental oxygen (O2) are naturally occurring phenomena which ectotherms have to face on. Many species exhibit a striking capacity to survive and remain active for long periods under hypoxia, even tolerating anoxia. Some fundamental adaptations contribute to this capacity: metabolic suppression, tolerance of pH and ionic unbalance, avoidance and/or repair of free-radical-induced cell injury during reoxygenation. A remarkable feature of these species is their ability to preserve a normal cardiovascular performance during hypoxia/anoxia to match peripheral (tissue pO2) requirements. In this review, we will refer to paradigms of hypoxia- and anoxia-tolerant teleost fish to illustrate cardiac physiological strategies that, by involving nitric oxide and its metabolites, play a critical role in the adaptive responses to O2 limitation. The information here reported may contribute to clarify the molecular and cellular mechanisms underlying heart vulnerability vs. resistance in relation to O2 availability.
Collapse
Affiliation(s)
- Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
12
|
Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system. Nitric Oxide 2017; 65:50-59. [DOI: 10.1016/j.niox.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 11/19/2022]
|
13
|
Imbrogno S, Mazza R, Pugliese C, Filice M, Angelone T, Loh YP, Tota B, Cerra MC. The Chromogranin A-derived sympathomimetic serpinin depresses myocardial performance in teleost and amphibian hearts. Gen Comp Endocrinol 2017; 240:1-9. [PMID: 27633326 DOI: 10.1016/j.ygcen.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 02/03/2023]
Abstract
Chromogranin A (CgA) is an acidic protein co-stored with catecholamines, hormones and neuropeptides in the secretory granules of endocrine, neuronal and other cell types (including cardiomyocytes). Proteolytic cleavage in the C terminus of CgA generates a 2.9kDa peptide named serpinin (Serp; Ala26Leu) that can be modified at its N terminus to form a pyroglutamate residue (pGlu-Serp). In the rat heart, both peptides increase contractility and relaxation through a β-adrenergic-like action mechanism. Accordingly, Serp and pGlu-Serp were proposed as novel myocardial sympatho-adrenergic modulators in mammals. On a comparative basis, here we report the actions of Serp and pGlu-Serp on myocardial contractility in three poikilotherm vertebrate species: the eel (Anguilla anguilla), the goldfish (Carassius auratus) and the frog (Rana esculenta). Using isolated working heart preparations, we show that pGlu-Serp reduces stroke volume in all species tested, while Serp reduces contractility in the frog heart, but is uneffective in eel and goldfish hearts. In the goldfish and frog hearts, pGlu-Serp activates the Nitric Oxide/cGMP pathway involving Endothelin-1 B receptors (frog) and β3 adrenergic receptors (goldfish). pGlu-Serp-treated hearts from goldfish and frog show increased cGMP content. Moreover, the exposure of the frog heart to pGlu-Serp is accompanied by an increased expression of activated eNOS and Akt. In conclusion, this first report showing that pGlu-Serp inhibits mechanical cardiac performance in teleost and amphibians supports an evolutionary role of the CgA system, and particularly its serpinin component, in the sympatho-adrenergic control of the vertebrate heart.
Collapse
Affiliation(s)
- S Imbrogno
- Dept. of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende (CS), Italy.
| | - R Mazza
- Dept. of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende (CS), Italy
| | - C Pugliese
- Dept. of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende (CS), Italy
| | - M Filice
- Dept. of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende (CS), Italy
| | - T Angelone
- Dept. of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende (CS), Italy
| | - Y P Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - B Tota
- Dept. of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende (CS), Italy
| | - M C Cerra
- Dept. of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende (CS), Italy
| |
Collapse
|
14
|
|
15
|
Rimoldi S, Terova G, Zaccone G, Parker T, Kuciel M, Dabrowski K. The Effect of Hypoxia and Hyperoxia on Growth and Expression of Hypoxia-Related Genes and Proteins in Spotted Gar Lepisosteus oculatus Larvae and Juveniles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:250-67. [PMID: 27245617 DOI: 10.1002/jez.b.22680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
We studied the molecular responses to different water oxygen levels in gills and swim bladder of spotted gar (Lepisosteus oculatus), a bimodal breather. Fish at swim-up stage were exposed for 71 days to normoxic, hypoxic, and hyperoxic water conditions. Then, all aquaria were switched to normoxic conditions for recovery until the end of the experiment (120 days). Fish were sampled at the beginning of the experiment, and then at 71 days of exposure and at 8 days of recovery. We first cloned three hypoxia-related genes, hypoxia-inducible factor 2α (HIF-2α), Na(+) /H(+) exchanger 1 (NHE-1), and NHE-3, and uploaded their cDNA sequences in the GeneBank database. We then used One Step Taqman® real-time PCR to quantify the mRNA copies of target genes in gills and swim bladder of fish exposed to different water O2 levels. We also determined the protein expression of HIF-2α and neuronal nitric oxide synthase (nNOS) in the swim bladder by using confocal immunofluorescence. Hypoxic stress for 71 days significantly increased the mRNA copies of HIF-2α and NHE-1 in gills and swim bladder, whereas normoxic recovery for 8 days decreased the HIF-2α mRNA copies to control values in both tissues. We did not found significant changes in mRNA copies of the NHE-3 gene in either gills or swim bladder in response to hypoxia and hyperoxia. Unlike in normoxic swim bladder, double immunohistochemical staining in hypoxic and hyperoxic swim bladder using nNOS/HIF-2α showed extensive bundles of HIF-2α-positive nerve fibers in the trabecular musculature associated with a few varicose nNOS immunoreactive nerve terminals.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy
| | - Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Tim Parker
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| | - Michal Kuciel
- Poison Information Centre, Jagiellonian University Medical College, Crakow, Poland
| | - Konrad Dabrowski
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Gattuso A, Angelone T, Cerra MC. Methodological challenges in the ex vivo hemodynamic evaluation of the myocardial stretch response: The case of catestatin-induced modulation of cardiac contractility. Nitric Oxide 2016; 53:4-5. [PMID: 26748292 DOI: 10.1016/j.niox.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende CS, Italy; National Institute of Cardiovascular Research, Bologna, Italy.
| | - T Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende CS, Italy; National Institute of Cardiovascular Research, Bologna, Italy
| | - M C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende CS, Italy; National Institute of Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
17
|
Corti P, Ieraci M, Tejero J. Characterization of zebrafish neuroglobin and cytoglobins 1 and 2: Zebrafish cytoglobins provide insights into the transition from six-coordinate to five-coordinate globins. Nitric Oxide 2015; 53:22-34. [PMID: 26721561 DOI: 10.1016/j.niox.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
Neuroglobin (Ngb) and cytoglobin (Cygb) are two six-coordinate heme proteins of unknown physiological function. Although studies on the mammalian proteins have elucidated aspects of Ngb and Cygb biophysics and indicated potential functions, the properties of non-mammalian Ngbs and Cygbs are largely uncharacterized. We have expressed the recombinant zebrafish proteins Ngb, Cygb1, and Cygb2 in Escherichia coli and characterized their nitrite reduction rates, spectral properties, autoxidation rate constants, redox potentials and lipid binding properties. The three zebrafish proteins can catalyze the reduction of nitrite to nitric oxide with a broad range of reaction rate constants. (Ngb, 0.68 ± 0.04 M(-1) s(-1); Cygb1, 28.6 ± 3.1 M(-1) s(-1); Cygb2, 0.94 ± 0.18 M(-1) s(-1)). We observe that zebrafish Ngb and Cygb2 have comparable spectral features to those of human Ngb and Cygb, consistent with a six-coordinate heme, whereas unexpectedly Cygb1 has a five-coordinate heme, a slower autoxidation and in general has properties more akin to oxygen transport proteins. In agreement with a possible oxygen carrier and nitrite reductase role, we detect mRNA transcript for Cygb1 but not Cygb2 or Ngb in zebrafish blood. Unlike human Cygb, neither of the zebrafish globins binds oleic acid with high affinity. This finding suggests that lipid binding may be a trait acquired later during evolution and not an ancestral property of cytoglobins. Altogether, our results uncover unexpected properties of zebrafish globins and reveal the pivotal role of cytoglobins in the transition of heme globins from six-coordinate to five-coordinate oxygen carriers and nitrite reductases.
Collapse
Affiliation(s)
- Paola Corti
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Ieraci
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
18
|
Gary R, Amelio D, Garofalo F, Petriashvili G, De Santo MP, Ip YK, Barberi R. Endothelial-like nitric oxide synthase immunolocalization by using gold nanoparticles and dyes. BIOMEDICAL OPTICS EXPRESS 2015; 6:4738-4748. [PMID: 26713190 PMCID: PMC4679250 DOI: 10.1364/boe.6.004738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Immunofluorescence is a biological technique that allows displaying the localization of the target molecule through a fluorescent microscope. We used a combination of gold nanoparticles and the fluorescein isothiocianate, FITC, as optical contrast agents for laser scanning confocal microscopy imaging to localize the endothelial-like nitric oxide synthase in skeletal muscle cells in a three-dimensional tissue phantom at the depth of 4µm. The FITC detected fluorescence intensity from gold-nanoparticles-labelled cells was brighter than the emission intensity from unlabelled cells.
Collapse
Affiliation(s)
- Ramla Gary
- Physics Department, University of Calabria, Rende, 87036,
Italy
| | - Daniela Amelio
- Department of Biology Ecology and Earth Science (B.E.ST), University of Calabria, 87030 Arcavacata di Rende, CS,
Italy
| | - Filippo Garofalo
- Department of Biology Ecology and Earth Science (B.E.ST), University of Calabria, 87030 Arcavacata di Rende, CS,
Italy
| | - Gia Petriashvili
- Physics Department, University of Calabria, Rende, 87036,
Italy
- Institute of Cybernetics of the Georgian Technical University, Tbilisi, 0175,
Georgia
| | - Maria Penelope De Santo
- Physics Department, University of Calabria, Rende, 87036,
Italy
- CNR-Nanotec UOS di Cosenza, c/o University of Calabria, Rende 87036,
Italy
| | - Yuen Kwong Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of
Singapore
| | - Riccardo Barberi
- Physics Department, University of Calabria, Rende, 87036,
Italy
- CNR-Nanotec UOS di Cosenza, c/o University of Calabria, Rende 87036,
Italy
| |
Collapse
|
19
|
Garofalo F, Amelio D, Icardo J, Chew S, Tota B, Cerra M, Ip Y. Signal molecule changes in the gills and lungs of the African lungfish Protopterus annectens, during the maintenance and arousal phases of aestivation. Nitric Oxide 2015; 44:71-80. [DOI: 10.1016/j.niox.2014.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 01/20/2023]
|
20
|
The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 2014; 185:153-71. [DOI: 10.1007/s00360-014-0877-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
21
|
Nitric oxide improves the hemodynamic performance of the hypoxic goldfish (Carassius auratus) heart. Nitric Oxide 2014; 42:24-31. [DOI: 10.1016/j.niox.2014.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 11/24/2022]
|
22
|
Imbrogno S, Garofalo F, Amelio D, Capria C, Cerra MC. Humoral control of cardiac remodeling in fish: role of Angiotensin II. Gen Comp Endocrinol 2013; 194:189-97. [PMID: 24080085 DOI: 10.1016/j.ygcen.2013.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Angiotensin II (AngII), the principal effector of the Renin-Angiotensin-System (RAS), is a multipotent hormone whose biological actions include short-term modulation as well as long-term adjustments. In the eel heart, AngII elicits short-term inotropic and chronotropic effects. However, information regarding the influence of AngII on cardiac remodeling, expressed as morphological and hemodynamic changes, is lacking. To clarify the putative actions of AngII on eel cardiac remodeling, we used freshwater eels (Anguilla anguilla) intraperitoneally injected for 4 weeks with saline or AngII (0.4 or 1.2 nmol g BW(-1)) or AngII (1.2 nmol g BW(-1)) plus the AT₂ receptor antagonist CGP42112. Using an in vitro working heart preparation, the cardiac response (stroke volume changes) to preload and afterload increases has been evaluated. Hearts of all groups showed similar Frank-Starling responses. However, in response to afterload increases, stroke volume rapidly decreased in control hearts, while it was better maintained in AngII-treated counterparts. These effects were abolished by an antagonist of the AT₂ receptor, whose cardiac expression was revealed by western blotting analysis. We also found by immunolocalization and immunoblotting that AngII influences both expression and localization of molecules which regulate cell growth [such as c-kit, heat shock protein 90 (Hsp-90), endothelial Nitric Oxide Synthase "(eNOS)-like" isoform] and apoptosis [i.e. apoptosis repressor with CARD domain (ARC)], thus playing a role in cardiac long-term adjustments. These results point to a role of AngII in eel heart remodeling, providing new insights regarding the modulation of cardiac plasticity in fish.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Italy.
| | | | | | | | | |
Collapse
|
23
|
Imbrogno S. The eel heart: multilevel insights into functional organ plasticity. J Exp Biol 2013; 216:3575-86. [DOI: 10.1242/jeb.089292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
The remarkable functional homogeneity of the heart as an organ requires a well-coordinated myocardial heterogeneity. An example is represented by the selective sensitivity of the different cardiac cells to physical (i.e. shear stress and/or stretch) or chemical stimuli (e.g. catecholamines, angiotensin II, natriuretic peptides, etc.), and the cell-specific synthesis and release of these substances. The biological significance of the cardiac heterogeneity has recently received great attention in attempts to dissect the complexity of the mechanisms that control the cardiac form and function. A useful approach in this regard is to identify natural models of cardiac plasticity. Among fishes, eels (genus Anguilla), for their adaptive and acclimatory abilities, represent a group of animals so far largely used to explore the structural and ultrastructural myoarchitecture organization, as well as the complex molecular networks involved in the modulation of the heart function, such as those converting environmental signals into physiological responses. However, an overview on the existing current knowledge of eel cardiac form and function is not yet available. In this context, this review will illustrate major features of eel cardiac organization and pumping performance. Aspects of autocrine–paracrine modulation and the influence of factors such as body growth, exercise, hypoxia and temperature will highlight the power of the eel heart as an experimental model useful to decipher how the cardiac morpho-functional heterogeneities may support the uniformity of the whole-organ mechanics.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Italy
| |
Collapse
|
24
|
Helbo S, Fago A, Gesser H. Myoglobin-dependent O2 consumption of the hypoxic trout heart. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:40-5. [DOI: 10.1016/j.cbpa.2013.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
|
25
|
Cardiac KATP channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.). Comp Biochem Physiol A Mol Integr Physiol 2013; 164:554-64. [DOI: 10.1016/j.cbpa.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/24/2012] [Accepted: 12/25/2012] [Indexed: 01/21/2023]
|
26
|
Amelio D, Garofalo F, Wong WP, Chew SF, Ip YK, Cerra MC, Tota B. Nitric oxide synthase-dependent "on/off" switch and apoptosis in freshwater and aestivating lungfish, Protopterus annectens: skeletal muscle versus cardiac muscle. Nitric Oxide 2013; 32:1-12. [PMID: 23545405 DOI: 10.1016/j.niox.2013.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/14/2013] [Accepted: 03/22/2013] [Indexed: 01/15/2023]
Abstract
African lungfishes (Protopterus spp.) are obligate air breathers which enter in a prolonged torpor (aestivation) in association with metabolic depression, and biochemical and morpho-functional readjustments during the dry season. During aestivation, the lungfish heart continues to pump, while the skeletal muscle stops to function but can immediately contract during arousal. Currently, nothing is known regarding the orchestration of the multilevel rearrangements occurring in myotomal and myocardial muscles during aestivation and arousal. Because of its universal role in cardio-circulatory and muscle homeostasis, nitric oxide (NO) could be involved in coordinating these stress-induced adaptations. Western blotting and immunofluorescence microscopy on cardiac and skeletal muscles of Protopterus annectens (freshwater, 6months of aestivation and 6days after arousal) showed that expression, localization and activity of the endothelial-like nitric oxide synthase (eNOS) isoform and its partners Akt and Hsp-90 are tissue-specifically modulated. During aestivation, phospho-eNOS/eNOS and phospho-Akt/Akt ratios increased in the heart but decreased in the skeletal muscle. By contrast, Hsp-90 increased in both muscle types during aestivation. TUNEL assay revealed that increased apoptosis occurred in the skeletal muscle of aestivating lungfish, but the myocardial apoptotic rate of the aestivating lungfish remained unchanged as compared with the freshwater control. Consistent with the preserved cardiac activity during aestivation, the expression of apoptosis repressor (ARC) also remained unchanged in the heart of aestivating and aroused fish as compared with the freshwater control. Contrarily, ARC expression was strongly reduced in the skeletal muscle of aestivating lungfish. On the whole, our data indicate that changes in the eNOS/NO system and cell turnover are implicated in the morpho-functional readjustments occurring in lungfish cardiac and skeletal muscle during the switch from freshwater to aestivation, and between the maintenance and arousal phases of aestivation.
Collapse
Affiliation(s)
- D Amelio
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Amelio D, Garofalo F, Capria C, Tota B, Imbrogno S. Effects of temperature on the nitric oxide-dependent modulation of the Frank-Starling mechanism: the fish heart as a case study. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:356-62. [PMID: 23123761 DOI: 10.1016/j.cbpa.2012.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023]
Abstract
The Frank-Starling law is a fundamental property of the vertebrate myocardium which allows, when the end-diastolic volume increases, that the consequent stretch of the myocardial fibers generates a more forceful contraction. It has been shown that in the eel (Anguilla anguilla) heart, nitric oxide (NO) exerts a direct myocardial relaxant effect, increasing the sensitivity of the Frank-Starling response (Garofalo et al., 2009). With the use of isolated working heart preparations, this study investigated the relationship between NO modulation of Frank-Starling response and temperature challenges in the eel. The results showed that while, in long-term acclimated fish (spring animals perfused at 20 °C and winter animals perfused at 10 °C) the inhibition of NO production by L-N5 (1-iminoethyl)ornithine (L-NIO) significantly reduced the Frank-Starling response, under thermal shock conditions (spring animals perfused at 10 or 15 °C and winter animals perfused at 15 or 20 °C) L-NIO treatment resulted without effect. Western blotting analysis revealed a decrease of peNOS and pAkt expressions in samples subjected to thermal shock. Moreover, an increase in Hsp90 protein levels was observed under heat thermal stress. Together, these data suggest that the NO synthase/NO-dependent modulation of the Frank-Starling mechanism in fish is sensitive to thermal stress.
Collapse
Affiliation(s)
- D Amelio
- Dept. of Cell Biology, University of Calabria, Italy
| | | | | | | | | |
Collapse
|
28
|
Morpho-functional characterization of the goldfish (Carassius auratus L.) heart. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:215-22. [PMID: 22705557 DOI: 10.1016/j.cbpa.2012.05.206] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 12/23/2022]
Abstract
Using morphological and physiological approaches we provided, for the first time, a structural and functional characterization of Carassius auratus L. heart. Besides to the classical four chambers, i.e. sinus venosus, atrium, ventricle, bulbus, we described two distinct structures corresponding to the atrio-ventricular (AV) region and the conus arteriosus. The atrium is very large and highly trabeculated; the ventricle shows an outer compacta, vascularized by coronary vessels, and an inner spongiosa; the bulbus wall is characterized by a high elastin/collagen ratio, which makes it extremely compliant. Immunolocalization revealed a strong expression of activated "eNOS-like" isoforms both at coronary endothelium and, to a lesser extent, in the myocardiocytes and the endocardial endothelium (EE). The structural design of the heart appears to comply with its mechanical function. Using an in vitro working heart preparation, cardiac performance was evaluated at different filling and afterload pressures. The hearts were very sensitive to filling pressure increases. Maximum Stroke volume (SV=1.08 ± 0.09 mL/kg body mass) was obtained with an input pressure of 0.4 kPa. The heart was not able to sustain afterload increases, values higher than 1.5 kPa impairing its performance. These morpho-functional features are consistent with a volume pump mechanical performance.
Collapse
|
29
|
Cardiac heterometric response: the interplay between Catestatin and nitric oxide deciphered by the frog heart. Nitric Oxide 2012; 27:40-9. [PMID: 22555002 DOI: 10.1016/j.niox.2012.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/19/2012] [Accepted: 04/16/2012] [Indexed: 01/20/2023]
Abstract
The length-active tension relation or heterometric regulation (Frank-Starling mechanism) is modulated by nitric oxide (NO) which, released in pulsatile fashion from the beating heart, improves myocardial relaxation and diastolic distensibility. The NO signaling is also implicated in the homeometric regulation exerted by extrinsic factors such as autonomic nervous system, endocrine and humoral agents. In the in vitro working frog heart, the Chromogranin A (CGA)-derived peptide, Catestatin (CTS; bovine CGA344-364), exerts a direct cardio-suppressive action through a NOS-NO-cGMP-mediated mechanism which requires the functional integrity of the endocardial endothelium (EE) and its endothelin-1 B type (ETB) receptor. However, functional interplay between NO and CTS and their role in the Frank-Starling response of the frog heart are lacking. Here we show that CTS improves the sensitivity to preload increases similar to that exerted by NO. This effect is abolished by inhibition of NO synthase (L-NAME), guanylate cyclase (ODQ), protein kinase G (KT5823), PI3K (Wortmannin), as well as by the functional damage of EE (Triton X-100) suggesting that CTS operates through an EE-dependent NO release. On the whole, the use of the avascular frog heart revealed the EE as major sensor-transducer interface between the physical (volume load) and chemical (CTS) stimuli, NO functioning as a connector between heterometric and homeometric regulation.
Collapse
|
30
|
Angelone T, Gattuso A, Imbrogno S, Mazza R, Tota B. Nitrite is a positive modulator of the Frank-Starling response in the vertebrate heart. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1271-81. [PMID: 22492815 DOI: 10.1152/ajpregu.00616.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence from both mammalian and nonmammalian vertebrates indicates that intracardiac nitric oxide (NO) facilitates myocardial relaxation, ventricular diastolic distensibility, and, consequently, the Frank-Starling response, i.e., the preload-induced increase of cardiac output. Since nitrite ion (NO(2)(-)), the major storage pool of bioactive NO, recently emerged as a cardioprotective endogenous modulator, we explored its influence on the Frank-Starling response in eel, frog, and rat hearts, used as paradigms of fish, amphibians, and mammals, respectively. We demonstrated that, like NO, exogenous nitrite improves the Frank-Starling response in all species, as indicated by an increase of stroke volume and stroke work (eel and frog) and of left ventricular (LV) pressure and LVdP/dt max (rat), used as indexes of inotropism. Unlike in frog and rat, in eel, the positive influence of nitrite appeared to be dependent on NO synthase inhibition. In all species, the effect was sensitive to NO scavengers, independent on nitroxyl anion, and mediated by a cGMP/PKG-dependent pathway. Moreover, the nitrite treatment increased S-nitrosylation of lower-molecular-weight proteins in cytosolic and membrane fractions. These results suggest that nitrite acts as a physiological source of NO, modulating through different species-specific mechanisms, the stretch-induced intrinsic regulation of the vertebrate heart.
Collapse
Affiliation(s)
- Tommaso Angelone
- Dept. of Cell Biology, Univ. of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | | | | | | | | |
Collapse
|
31
|
Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:1-6. [PMID: 22314020 DOI: 10.1016/j.cbpa.2012.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia.
Collapse
|