1
|
Vanin AF. Physico-Chemistry of Dinitrosyl Iron Complexes as a Determinant of Their Biological Activity. Int J Mol Sci 2021; 22:10356. [PMID: 34638698 PMCID: PMC8508859 DOI: 10.3390/ijms221910356] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this article we minutely discuss the so-called "oxidative" mechanism of mononuclear form of dinitrosyl iron complexes (M-DNICs) formations proposed by the author. M-DNICs are proposed to be formed from their building material-neutral NO molecules, Fe2+ ions and anionic non-thiol (L-) and thiol (RS-) ligands based on the disproportionation reaction of NO molecules binding with divalent ion irons in pairs. Then a protonated form of nitroxyl anion (NO-) appearing in the reaction is released from this group and a neutral NO molecule is included instead. As a result, M-DNICs are produced. Their resonance structure is described as [(L-)2Fe2+(NO)(NO+)], in which nitrosyl ligands are represented by NO molecules and nitrosonium cations in equal proportions. Binding of hydroxyl ions with the latter causes conversion of these cations into nitrite anions at neutral pH values and therefore transformation of DNICs into the corresponding high-spin mononitrosyl iron complexes (MNICs) with the resonance structure described as [(L-)2Fe2+(NO)]. In case of replacing L- by thiol-containing ligands, which are characterized by high π-donor activity, electron density transferred from sulfur atoms to iron-dinitrosyl groups neutralizes the positive charge on nitrosonium cations, which prevents their hydrolysis, ensuring relatively a high stability of the corresponding M-DNICs with the resonance structure [(RS-)2Fe2+ (NO, NO+)]. Therefore, M-DNICs with thiol-containing ligands, as well as their binuclear analogs (B-DNICs, respective resonance structure [(RS-)2Fe2+2 (NO, NO+)2]), can serve donors of both NO and NO+. Experiments with solutions of B-DNICs with glutathione or N-acetyl-L-cysteine (B-DNIC-GSH or B-DNIC-NAC) showed that these complexes release both NO and NO+ in case of decomposition in the presence of acid or after oxidation of thiol-containing ligands in them. The level of released NO was measured via optical absorption intensity of NO in the gaseous phase, while the number of released nitrosonium cations was determined based on their inclusion in S-nitrosothiols or their conversion into nitrite anions. Biomedical research showed the ability of DNICs with thiol-containing ligands to be donors of NO and NO+ and produce various biological effects on living organisms. At the same time, NO molecules released from DNICs usually have a positive and regulatory effect on organisms, while nitrosonium cations have a negative and cytotoxic effect.
Collapse
Affiliation(s)
- Anatoly F Vanin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences Moscow, 119991 Moscow, Russia
| |
Collapse
|
2
|
Daniel T, Faruq HM, Laura Magdalena J, Manuela G, Christopher Horst L. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism-Review. Molecules 2020; 25:E3860. [PMID: 32854270 PMCID: PMC7503856 DOI: 10.3390/molecules25173860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
Collapse
Affiliation(s)
- Trnka Daniel
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Hossain Md Faruq
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Jordt Laura Magdalena
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Gellert Manuela
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Lillig Christopher Horst
- Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
4
|
Liu T, Zhang M, Terry MH, Schroeder H, Wilson SM, Power GG, Li Q, Tipple TE, Borchardt D, Blood AB. Hemodynamic Effects of Glutathione-Liganded Binuclear Dinitrosyl Iron Complex: Evidence for Nitroxyl Generation and Modulation by Plasma Albumin. Mol Pharmacol 2018; 93:427-437. [PMID: 29476040 PMCID: PMC5878675 DOI: 10.1124/mol.117.110957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/21/2018] [Indexed: 12/25/2022] Open
Abstract
Glutathione-liganded binuclear dinitrosyl iron complex (glut-BDNIC) has been proposed to be a donor of nitric oxide (NO). This study was undertaken to investigate the mechanisms of vasoactivity, systemic hemodynamic effects, and pharmacokinetics of glut-BDNIC. To test the hypothesis that glut-BDNICs vasodilate by releasing NO in its reduced [nitroxyl (HNO)] state, a bioassay method of isolated, preconstricted ovine mesenteric arterial rings was used in the presence of selective scavengers of HNO or NO free radical (NO•); the vasodilatory effects of glut-BDNIC were found to have characteristics similar to those of an HNO donor and markedly different than an NO• donor. In addition, products of the reaction of glut-BDNIC with CPTIO [2-(4-carboxyphenyl)-4,4,5-tetramethyl imidazoline-1-oxyl-3-oxide] were found to have electron paramagnetic characteristics similar to those of an HNO donor compared with an NO• donor. In contrast to S-nitroso-glutathione, which was vasodilative both in vitro and in vivo, the potency of glut-BDNIC-mediated vasodilation was markedly diminished in both rats and sheep. Wire myography showed that plasma albumin contributed to this loss of hypotensive effects, an effect abolished by modification of the cysteine-thiol residue of albumin. High doses of glut-BDNIC caused long-lasting hypotension in rats that can be at least partially attributed to its long circulating half-life of ∼44 minutes. This study suggests that glut-BDNIC is an HNO donor, and that its vasoactive effects are modulated by binding to the cysteine residue of plasma proteins, such as albumin.
Collapse
Affiliation(s)
- Taiming Liu
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Michael H Terry
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Hobe Schroeder
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Sean M Wilson
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Gordon G Power
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Qian Li
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Dan Borchardt
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| | - Arlin B Blood
- Division of Neonatology, Department of Pediatrics (T.L., M.Z., A.B.B.), Department of Respiratory Care (M.H.T.), and Center for Perinatal Biology (H.S., S.M.W., G.G.P., A.B.B.), Loma Linda University School of Medicine, Loma Linda, California; Neonatal Redox Biology Laboratory, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama (Q.L., T.E.T.); and Department of Chemistry, University of California, Riverside, California (D.B.)
| |
Collapse
|
6
|
Vanin AF, Borodulin RR, Mikoyan VD. Dinitrosyl iron complexes with natural thiol-containing ligands in aqueous solutions: Synthesis and some physico-chemical characteristics (A methodological review). Nitric Oxide 2017; 66:1-9. [PMID: 28216238 DOI: 10.1016/j.niox.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/16/2023]
Abstract
Two approaches to the synthesis of dinitrosyl iron complexes (DNIC) with glutathione and l-cysteine in aqueous solutions based on the use of gaseous NO and appropriate S-nitrosothiols, viz., S-nitrosoglutathione (GS-NO) or S-nitrosocysteine (Cys-NO), respectively, are considered. A schematic representation of a vacuum unit for generation and accumulation of gaseous NO purified from the NO2 admixture and its application for obtaining aqueous solutions of DNIC in a Thunberg apparatus is given. To achieve this, a solution of bivalent iron in distilled water is loaded into the upper chamber of the Thunberg apparatus, while the thiol solution in an appropriate buffer (рН 7.4) is loaded into its lower chamber. Further steps, which include degassing, addition of gaseous NO, shaking of both solutions and formation of the Fe2+-thiol mixture, culminate in the synthesis of DNIC. The second approach consists in a stepwise addition of Fe2+ salts and nitrite to aqueous solutions of glutathione or cysteine. In the presence of Fe2+ and after the increase in рН to the physiological level, GS-NO or Cys-NO generated at acid media (pH < 4) are converted into DNIC with glutathione or cysteine. Noteworthy, irrespective of the procedure used for their synthesis DNIC with glutathione manifest much higher stability than DNIC with cysteine. The pattern of spin density distribution in iron-dinitrosyl fragments of DNIC characterized by the d7 electronic configuration of the iron atom and described by the formula Fe+(NO+)2 is unique in that it provides a plausible explanation for the ability of DNIC to generate NO and nitrosonium ions (NO+) and the peculiar characteristics of the EPR signal of their mononuclear form (M-DNIC).
Collapse
Affiliation(s)
- Anatoly F Vanin
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Institute of Regenerative Medicine, I.M. Sechenov First Moscow Medical University, Moscow, Russia.
| | - Rostislav R Borodulin
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Vasak D Mikoyan
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|