1
|
Liu YK, Dong YH, Liang XM, Qiang S, Li ME, Sun Z, Zhao X, Yan ZH, Zheng J. Application of integrated omics in aseptic loosening of prostheses after hip replacement. Mol Med Rep 2025; 31:65. [PMID: 39749710 PMCID: PMC11726296 DOI: 10.3892/mmr.2025.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/06/2024] [Indexed: 01/04/2025] Open
Abstract
Aseptic loosening (AL) of artificial hip joints is the most common complication following hip replacement surgery. A total of eight patients diagnosed with AL following total hip arthroplasty (THA) undergoing total hip replacement and eight control patients diagnosed with avascular necrosis of femoral head (ANFH) or femoral neck fracture undergoing THA were enrolled. The samples of the AL group were from synovial tissue surrounding the lining/head/neck of the prosthesis, and the samples of the control group were from the synovium in the joint cavity. The present study utilized second‑generation high‑throughput sequencing and mass spectrometry to detect differentially expressed genes, proteins and metabolites in the samples, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Key genes cytokine receptor‑like factor‑1 (CRLF1) and glutathione‑S transferase µ1 (GSTM1) expression levels were verified by reverse transcription‑quantitative PCR and western blotting. The integrated transcriptomics, proteomics and untargeted metabolomics analyses revealed characteristic metabolite changes (biosynthesis of guanine, L‑glycine and adenosine) and decreased CRLF1 and GSTM1 in AL, which were primarily associated with amino acid metabolism and lipid metabolism. In summary, the present study may uncover the underlying mechanisms of AL pathology and provide stable and accurate biomarkers for early warning and diagnosis.
Collapse
Affiliation(s)
- Yun-Ke Liu
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yong-Hui Dong
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xia-Ming Liang
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shuo Qiang
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Meng-En Li
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Zhuang Sun
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xin Zhao
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Zhi-Hua Yan
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jia Zheng
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
2
|
Li XY, Gu XY, Li XM, Yan JG, Mao XL, Yu Q, Du YL, Kurihara H, Yan CY, Li WX. Supplementation with carnosine, a food-derived bioactive dipeptide, alleviates dexamethasone-induced oxidative stress and bone impairment via the NRF2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1091-1104. [PMID: 39291490 DOI: 10.1002/jsfa.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/07/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Carnosine, a natural bioactive dipeptide derived from meat muscle, possesses strong antioxidant properties. Dexamethasone, widely employed for treating various inflammatory diseases, raises concerns regarding its detrimental effects on bone health. This study aimed to investigate the protective effects of carnosine against dexamethasone-induced oxidative stress and bone impairment, along with its underlying mechanisms, utilizing chick embryos and a zebrafish model in vivo, as well as MC3T3-E1 cells in vitro. RESULTS Our findings revealed that carnosine effectively mitigated bone injury in dexamethasone-exposed chick embryos, accompanied by reduced oxidative stress. Further investigation demonstrated that carnosine alleviated impaired osteoblastic differentiation in MC3T3-E1 cells and zebrafish by suppressing the excessive production of reactive oxygen species (ROS) and enhancing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, mechanistic studies elucidated that carnosine promoted the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby facilitating the transcription of its downstream antioxidant response elements, including heme oxyense-1 (HO-1), glutamate cysteine ligase modifier (GCLM), and glutamate cysteine ligase catalytic (GCLC) to counteract dexamethasone-induced oxidative stress. CONCLUSION Overall, this study underscores the potential therapeutic efficacy of carnosine in mitigating oxidative stress and bone damage induced by dexamethasone exposure, shedding light on its underlying mechanism of action by activating the NRF2 signaling pathway. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Yuan Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Min Li
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Jian-Gang Yan
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Xin-Liang Mao
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Qin Yu
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Yu-Lan Du
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Hiroshi Kurihara
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Liu S, Lu Q, Wang M, Guo H, Wang Y, Nong J, Wang S, Xia H, Xia T, Sun H. S-nitrosoglutathione reductase-dependent p65 denitrosation promotes osteoclastogenesis by facilitating recruitment of p65 to NFATc1 promoter. Bone 2024; 181:117036. [PMID: 38311303 DOI: 10.1016/j.bone.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Shumin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huilin Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yiwen Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Nong
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huifang Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Inoue BKN, Paludetto LV, Monteiro NG, Batista FRDS, Kitagawa IL, da Silva RS, Antoniali C, Lisboa Filho PN, Okamoto R. Synergic Action of Systemic Risedronate and Local Rutherpy in Peri-implantar Repair of Ovariectomized Rats: Biomechanical and Molecular Analysis. Int J Mol Sci 2023; 24:16153. [PMID: 38003342 PMCID: PMC10671386 DOI: 10.3390/ijms242216153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Postmenopausal osteoporosis and poor dietary habits can lead to overweightness and obesity. Bisphosphonates are the first-line treatment for osteoporosis. However, some studies show that they may increase the risk of osteonecrosis of the jaw. Considering the antimicrobial, angiogenic and vasodilatory potential of nitric oxide, this study aims to evaluate the local activity of this substance during the placement of surface-treated implants. Seventy-two Wistar rats were divided into three groups: SHAM (SHAM surgery), OVX + HD (ovariectomy + cafeteria diet), and OVX + HD + RIS (ovariectomy + cafeteria diet + sodium risedronate treatment), which were further subdivided according to the surface treatment of the future implant: CONV (conventional), TE10, or TE100 (TERPY at 10 or 100 μM concentration); n = 8 per subgroup. The animals underwent surgery for implant installation in the proximal tibia metaphysis and were euthanized after 28 days. Data obtained from removal torque and RT-PCR (OPG, RANKL, ALP, IBSP and VEGF expression) were subjected to statistical analysis at 5% significance level. For biomechanical analysis, TE10 produced better results in the OVX + HD group (7.4 N/cm, SD = 0.6819). Molecular analysis showed: (1) significant increase in OPG gene expression in OVX groups with TE10; (2) decreased RANKL expression in OVX + HD + RIS compared to OVX + HD; (3) significantly increased expressions of IBSP and VEGF for OVX + HD + RIS TE10. At its lowest concentration, TERPY has the potential to improve peri-implant conditions.
Collapse
Affiliation(s)
- Bruna Kaori Namba Inoue
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Laura Vidoto Paludetto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Naara Gabriela Monteiro
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Fábio Roberto de Souza Batista
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Igor Lebedenco Kitagawa
- Federal Institute of Education, Science and Technology of São Paulo (IFSP), Birigui 16201-407, SP, Brazil;
| | - Roberto Santana da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-403, SP, Brazil;
| | - Cristina Antoniali
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Paulo Noronha Lisboa Filho
- Department of Physics and Meteorology, Bauru Sciences School, São Paulo State University Júlio de Mesquita Filho—UNESP, Bauru 17033-360, SP, Brazil;
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| |
Collapse
|
5
|
Liu Z, Wang R, Liu W, Liu Y, Feng X, Zhao F, Chen P, Shao L, Rong M. Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review. Biomater Sci 2023; 11:7003-7017. [PMID: 37718623 DOI: 10.1039/d3bm00877k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Silicon nitride, an emerging bioceramic material, is highly sought after in the biomedical industry due to its osteogenesis-promoting properties, which are a result of its unique surface chemistry and excellent mechanical properties. Currently, it is used in clinics as an orthopedic implant material. The osteogenesis-promoting properties of silicon nitride are manifested in its contribution to the formation of a local osteogenic microenvironment, wherein silicon nitride and its hydrolysis products influence osteogenesis by modulating the biological behaviors of the constituents of the osteogenic microenvironment. In particular, silicon nitride regulates redox signaling, cellular autophagy, glycolysis, and bone mineralization in cells involved in bone formation via several mechanisms. Moreover, it may also promote osteogenesis by influencing immune regulation and angiogenesis. In addition, the wettability, surface morphology, and charge of silicon nitride play crucial roles in regulating its osteogenesis-promoting properties. However, as a bioceramic material, the molding process of silicon nitride needs to be optimized, and its osteogenic mechanism must be further investigated. Herein, we summarize the impact of the molding process of silicon nitride on its osteogenic properties and clinical applications. In addition, the mechanisms of silicon nitride in promoting osteogenesis are discussed, followed by a summary of the current gaps in silicon nitride mechanism research. This review, therefore, aims to provide novel ideas for the future development and applications of silicon nitride.
Collapse
Affiliation(s)
- Ziyi Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Ruijie Wang
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Yushan Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Pei Chen
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Mingdeng Rong
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| |
Collapse
|
6
|
Connection between Osteoarthritis and Nitric Oxide: From Pathophysiology to Therapeutic Target. Molecules 2023; 28:molecules28041683. [PMID: 36838671 PMCID: PMC9959782 DOI: 10.3390/molecules28041683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA), a disabling joint inflammatory disease, is characterized by the progressive destruction of cartilage, subchondral bone remodeling, and chronic synovitis. Due to the prolongation of the human lifespan, OA has become a serious public health problem that deserves wide attention. The development of OA is related to numerous factors. Among the factors, nitric oxide (NO) plays a key role in mediating this process. NO is a small gaseous molecule that is widely distributed in the human body, and its synthesis is dependent on NO synthase (NOS). NO plays an important role in various physiological processes such as the regulation of blood volume and nerve conduction. Notably, NO acts as a double-edged sword in inflammatory diseases. Recent studies have shown that NO and its redox derivatives might be closely related to both normal and pathophysiological joint conditions. They can play vital roles as normal bone cell-conditioning agents for osteoclasts, osteoblasts, and chondrocytes. Moreover, they can also induce cartilage catabolism and cell apoptosis. Based on different conditions, the NO/NOS system can act as an anti-inflammatory or pro-inflammatory agent for OA. This review summarizes the studies related to the effects of NO on all normal and OA joints as well as the possible new treatment strategies targeting the NO/NOS system.
Collapse
|
7
|
Kaneko K, Miyamoto Y, Ida T, Morita M, Yoshimura K, Nagasaki K, Toba K, Sugisaki R, Motohashi H, Akaike T, Chikazu D, Kamijo R. 8-Nitro-cGMP suppresses mineralization by mouse osteoblasts. J Clin Biochem Nutr 2022; 71:191-197. [PMID: 36447486 PMCID: PMC9701590 DOI: 10.3164/jcbn.21-129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/14/2022] [Indexed: 11/20/2023] Open
Abstract
Nitric oxide and reactive oxygen species regulate bone remodeling, which occurs via bone formation and resorption by osteoblasts and osteoclasts, respectively. Recently, we found that 8-nitro-cGMP, a second messenger of nitric oxide and reactive oxygen species, promotes osteoclastogenesis. Here, we investigated the formation and function of 8-nitro-cGMP in osteoblasts. Mouse calvarial osteoblasts were found to produce 8-nitro-cGMP, which was augmented by tumor necrosis factor-α (10 ng/ml) and interleukin-1β (1 ng/ml). These cytokines suppressed osteoblastic differentiation in a NO synthase activity-dependent manner. Exogenous 8-nitro-cGMP (30 μmol/L) suppressed expression of osteoblastic phenotypes, including mineralization, in clear contrast to the enhancement of mineralization by osteoblasts induced by 8-bromo-cGMP, a cell membrane-permeable analog of cGMP. It is known that reactive sulfur species denitrates and degrades 8-nitro-cGMP. Mitochondrial cysteinyl-tRNA synthetase plays a crucial role in the endogenous production of RSS. The expression of osteoblastic phenotypes was suppressed by not only exogenous 8-nitro-cGMP but also by silencing of the Cars2 gene, indicating a role of endogenous 8-nitro-cGMP in suppressing the expression of osteoblastic phenotypes. These results suggest that 8-nitro-cGMP is a negative regulator of osteoblastic differentiation.
Collapse
Affiliation(s)
- Kotaro Kaneko
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Kei Nagasaki
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Orthopedics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Kazuki Toba
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Risa Sugisaki
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
8
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
9
|
Kasamatsu S, Ihara H. Regulation of redox signaling by reactive sulfur species. J Clin Biochem Nutr 2021; 68:111-115. [PMID: 33879961 PMCID: PMC8046004 DOI: 10.3164/jcbn.20-124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 02/04/2023] Open
Abstract
Reactive sulfur species, such as cysteine persulfide, are produced endogenously at significant levels in cells and have rapidly emerged as common biomolecules. By virtue of improved analytical methods for detecting reactive persulfides, it has been demonstrated that these reactive molecules exhibit unique chemical properties and are present in various forms in vivo. Accumulating evidence has suggested that persulfides may be involved in a variety of biological processes, such as antioxidant and anti-inflammatory responses, biosynthesis of sulfur-containing molecules, mitochondrial energy metabolism via sulfur respiration, and cytoprotection via regulation of redox signal transduction induced by endogenous and exogenous electrophiles. Elucidation of the persulfide-dependent metabolism of redox signals is expected to facilitate our understanding of the importance of persulfides in regulating redox signals.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
10
|
Kasamatsu S. Persulfide-Dependent Regulation of Electrophilic Redox Signaling in Neural Cells. Antioxid Redox Signal 2020; 33:1320-1331. [PMID: 32536194 DOI: 10.1089/ars.2020.8130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Redox homeostasis is precisely modulated by intricate systems that regulate production, elimination, and metabolism of electrophilic substances (electrophiles) in the nervous system. Since the first report of the endogenous production of reactive persulfide species in cells, such as cysteine persulfides (CysSSH), these reactive species have been a topic of extreme interest in the field of redox biology; persulfides/polysulfides possess unique chemical properties and are involved in multiple cellular functions. Recent Advances: Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and their derivatives during stress responses, as well as by exogenous electrophiles, including compounds in foods and environmental pollutants, such as methylmercury (MeHg). Among diverse electrophiles that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) possesses unique redox properties, of which the biosynthetic pathway, signaling mechanism, and metabolism in cells have been elucidated. Critical Issues: Persulfides, such as CysSSH, that are endogenously produced are critically involved in 8-nitro-cGMP metabolism. Exposure of neurons to the exogenous neurotoxicant, MeHg, causes severe neurodegeneration via disruption of persulfide-dependent 8-nitro-cGMP metabolism. Future Directions: Accumulating evidence indicates that persulfides are involved in various cellular functions under physiological and pathological conditions. These new aspects of redox biology related to persulfides may be frontiers of cell research, medical and clinical investigations of neurodegenerative diseases, as well as other fields. 8-Nitro-cGMP-mediated signaling and its persulfide-dependent metabolism in cells could, therefore, be potential targets for drug development, which may lead to the discovery of new therapeutic agents for many diseases, including neurodegenerative diseases.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
11
|
The NOD- scid IL2rγnull Mouse Model Is Suitable for the Study of Osteoarticular Brucellosis and Vaccine Safety. Infect Immun 2019; 87:IAI.00901-18. [PMID: 30936160 DOI: 10.1128/iai.00901-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/27/2019] [Indexed: 01/20/2023] Open
Abstract
Osteoarticular brucellosis is the most common complication in Brucella-infected humans regardless of age, sex, or immune status. The mechanism of bone destruction caused by Brucella species remained partially unknown due to the lack of a suitable animal model. Here, to study this complication, we explored the suitability of the use of the NOD-scid IL2rγnull mouse to study osteoarticular brucellosis and examined the potential use of this strain to evaluate the safety of live attenuated vaccine candidates. Mice were inoculated intraperitoneally with a single dose of 1 × 104, 1 × 105, or 1 × 106 CFU of B. abortus S19 or the vaccine candidate B. abortus S19ΔvjbR and monitored for the development of side effects, including osteoarticular disease, for 13 weeks. Decreased body temperature, weight loss, splenomegaly, and deformation of the tails were observed in mice inoculated with B. abortus S19 but not in those inoculated with S19ΔvjbR Histologically, all S19-inoculated mice had a severe dose-dependent inflammatory response in multiple organs. The inflammatory response at the tail was characterized by the recruitment of large numbers of neutrophils, macrophages, and osteoclasts with marked bone destruction. These lesions histologically resembled what is typically observed in Brucella-infected patients. In contrast, mice inoculated with B. abortus S19ΔvjbR did not show significant bone changes. Immunofluorescence, in situ hybridization, and confocal imaging demonstrated the presence of Brucella at the sites of inflammation, both intra- and extracellularly, and large numbers of bacteria were observed within mature osteoclasts. These results demonstrate the potential use of the NOD-scid IL2rγnull mouse model to evaluate vaccine safety and further study osteoarticular brucellosis.
Collapse
|
12
|
Nagayama K, Miyamoto Y, Kaneko K, Yoshimura K, Sasa K, Akaike T, Fujii S, Izumida E, Uyama R, Chikazu D, Maki K, Kamijo R. Production of 8-nitro-cGMP in osteocytic cells and its upregulation by parathyroid hormone and prostaglandin E 2. In Vitro Cell Dev Biol Anim 2018; 55:45-51. [PMID: 30397855 DOI: 10.1007/s11626-018-0304-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Osteocytes regulate bone remodeling, especially in response to mechanical loading and unloading of bone, with nitric oxide reported to play an important role in that process. In the present study, we found that 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a second messenger of nitric oxide in various types of cells, was produced by osteocytes in bone tissue as well as cultured osteocytic Ocy454 cells. The amount of 8-nitro-cGMP in Ocy454 cells increased during incubation with parathyroid hormone or prostaglandin E2, both of which are known to upregulate receptor activator of nuclear factor-κB ligand (RANKL) mRNA expression in osteocytes. On the other hand, exogenous 8-nitro-cGMP did not have effects on either the presence or absence of these bioactive substances. Furthermore, neither an inhibitor of nitric oxide synthase nor 8-bromo-cGMP, a cell-permeable analog of cGMP, showed remarkable effects on mRNA expression of sclerostin or RANKL. These results indicate that neither nitric oxide nor its downstream compounds, including 8-nitro-cGMP, alone are sufficient for induction of functional changes in osteocytes.
Collapse
Affiliation(s)
- Kazuhiro Nagayama
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Department of Orthodontics, Showa University School of Dentistry, Shinagawa, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Kotaro Kaneko
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Shinjuku, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigemoto Fujii
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eri Izumida
- Department of Orthodontics, Showa University School of Dentistry, Shinagawa, Japan
| | - Risa Uyama
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Shinjuku, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, Shinagawa, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|