1
|
Kreutz L, Gaab A, Dona M, Pinto AR, Tallquist MD, Groneberg D, Friebe A. Analysis of cellular NO-GC expression in the murine heart and lineage determination in angiotensin II-induced fibrosis. iScience 2025; 28:111615. [PMID: 39829679 PMCID: PMC11742323 DOI: 10.1016/j.isci.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data. In healthy myocardium, NO-GC is strongly expressed in pericytes and smooth muscle cells but not in endothelial cells or cardiomyocytes. Angiotensin II induced cardiac hypertrophy and fibrosis; fibrotic lesions contained cells positive for NO-GC identified as activated fibroblasts. Lineage tracing indicates that NO-GC-expressing activated fibroblasts originate from PDGFRβ- and Tcf21-positive fibroblast precursors. Our data indicate NO-GC expression in cardiac pericytes and SMC in naive myocardium and in activated fibroblast in fibrotic heart tissue. NO-mediated signaling may modulate fibrotic responses underlying the action of NO-GC stimulators used in the therapy of heart failure.
Collapse
Affiliation(s)
- Lennart Kreutz
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Malathi Dona
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Michelle D. Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dieter Groneberg
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Idrizaj E, Biagioni C, Traini C, Vannucchi MG, Baccari MC. Glucagon-like Peptide-2 Depresses Ileal Contractility in Preparations from Mice through Opposite Modulatory Effects on Nitrergic and Cholinergic Neurotransmission. Int J Mol Sci 2024; 25:1855. [PMID: 38339131 PMCID: PMC10855646 DOI: 10.3390/ijms25031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Glucagon-like peptide-2 (GLP-2) has been reported to influence gastrointestinal motor responses, exerting a modulatory role on enteric neurotransmission. To our knowledge, no data on GLP-2 effects on the motility of the isolated ileum are available; therefore, we investigated whether GLP-2 affects the contractile activity of mouse ileal preparations and the neurotransmitters engaged. Ileal preparations showed tetrodotoxin (TTX)- and atropine-insensitive spontaneous contractile activity, which was unaffected by the nitric oxide synthesis inhibitor, L-NNA. GLP-2 depressed the spontaneous contractility, an effect that was abolished by TTX or L-NNA and not influenced by atropine. Electrical field stimulation induced TTX- and atropine-sensitive contractile responses, which were reduced in amplitude by GLP-2 even in the presence of L-NNA. Immunohistochemical results showed a significant increase in nNOS-positive fibers in the ileal muscle wall and a significant decrease in ChAT-positive myenteric neurons in GLP-2-exposed preparations. The present results offer the first evidence that GLP-2 acts on ileal preparations. The hormone appears to depress ileal contractility through a dual opposite modulatory effect on inhibitory nitrergic and excitatory cholinergic neurotransmission. From a physiological point of view, it could be hypothesized that GLP-2 inhibitory actions on ileal contractility can increase transit time, facilitating nutrient absorption.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental & Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Cristina Biagioni
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, 50139 Florence, Italy; (C.B.); (C.T.)
| | - Chiara Traini
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, 50139 Florence, Italy; (C.B.); (C.T.)
| | - Maria Giuliana Vannucchi
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, 50139 Florence, Italy; (C.B.); (C.T.)
| | - Maria Caterina Baccari
- Section of Physiological Sciences, Department of Experimental & Clinical Medicine, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
3
|
Idrizaj E, Nistri S, Nardini P, Baccari MC. Adiponectin affects ileal contractility of mouse preparations. Am J Physiol Gastrointest Liver Physiol 2024; 326:G187-G194. [PMID: 38111974 DOI: 10.1152/ajpgi.00203.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Adiponectin (ADPN) has been reported to induce inhibitory effects on gastric motor activity, which, being a source of peripheral satiety signals, would contribute to the central anorexigenic effects of the hormone in rodents. However, peripheral satiety signals can also originate from the small intestine. Since there are no data on the effects of ADPN in this gut region, the present study aimed to investigate whether ADPN affects murine ileal contractility. Immunofluorescence experiments and Western blot were also performed to reveal the expression of ADPN receptors. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Preparations showed a tetrodotoxin- and atropine-insensitive spontaneous contractile activity. Electrical field stimulation (EFS) induced tetrodotoxin- and atropine-sensitive contractile responses. ADPN induced a decay of the basal tension and decreased the amplitude of either the spontaneous contractility or the EFS-induced excitatory responses. All ADPN effects were abolished by the nitric oxide (NO) synthesis inhibitor NG-nitro l-arginine. The expression of the ADPN receptor, AdipoR1, but not AdipoR2, was also revealed in enteric glial cells. The present results offer the first evidence that ADPN acts on ileal preparations. The hormone exerts inhibitory effects, likely involving AdipoR1 on enteric glial cells and NO. From a physiological point of view, it could be hypothesized that the depressant action of ADPN on ileal contractility represents an additional peripheral satiety signal which, as also described for the ileal brake, could contribute to the central anorexigenic effects of the hormone.NEW & NOTEWORTHY This study provides the first evidence that adiponectin (ADPN) is able to act on ileal preparations. Functional results demonstrate that the hormone, other than causing a slight decay of the basal tension, depresses the amplitude of both spontaneous contractility and neurally induced excitatory responses of the mouse ileum through the involvement of nitric oxide. The expression of the ADPN receptor AdipoR1 and its localization on glial cells was revealed by Western blot and immunofluorescence analysis.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Firenze, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Firenze, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Firenze, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
4
|
Friebe A, Kraehling JR, Russwurm M, Sandner P, Schmidtko A. The 10th International Conference on cGMP 2022: recent trends in cGMP research and development-meeting report. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1669-1686. [PMID: 37079081 PMCID: PMC10338386 DOI: 10.1007/s00210-023-02484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g., neurodegenerative diseases or different forms of dementias, bone formation disorders, underlining the pivotal role of cGMP signaling pathways. The fundamental understanding of the signaling mediated by nitric oxide-sensitive (soluble) guanylyl cyclase and membrane-associated receptor (particulate) guanylyl cyclase at the molecular and cellular levels, as well as in vivo, especially in disease models, is a key prerequisite to fully exploit treatment opportunities and potential risks that could be associated with an excessive increase in cGMP. Furthermore, human genetic data and the clinical effects of cGMP-increasing drugs allow back-translation into basic research to further learn about signaling and treatment opportunities. The biannual international cGMP conference, launched nearly 20 years ago, brings all these aspects together as an established and important forum for all topics from basic science to clinical research and pivotal clinical trials. This review summarizes the contributions to the "10th cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications," which was held in Augsburg in 2022 but will also provide an overview of recent key achievements and activities in the field of cGMP research.
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | - Jan R. Kraehling
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | - Michael Russwurm
- Institute of Pharmacology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Peter Sandner
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Max-Von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| |
Collapse
|
5
|
Englert N, Burkard P, Aue A, Rosenwald A, Nieswandt B, Friebe A. Anti-Fibrotic and Anti-Inflammatory Role of NO-Sensitive Guanylyl Cyclase in Murine Lung. Int J Mol Sci 2023; 24:11661. [PMID: 37511420 PMCID: PMC10380760 DOI: 10.3390/ijms241411661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis is a chronic and progressive disease with limited therapeutic options. Nitric oxide (NO) is suggested to reduce the progression of pulmonary fibrosis via NO-sensitive guanylyl cyclase (NO-GC). The exact effects of NO-GC during pulmonary fibrosis are still elusive. Here, we used a NO-GC knockout mouse (GCKO) and examined fibrosis and inflammation after bleomycin treatment. Compared to wildtype (WT), GCKO mice showed an increased fibrotic reaction, as myofibroblast occurrence (p = 0.0007), collagen content (p = 0.0006), and mortality (p = 0.0009) were significantly increased. After fibrosis induction, lymphocyte accumulations were observed in the lungs of GCKO but not in WT littermates. In addition, the total number of immune cells, specifically lymphocytes (p = <0.0001) and neutrophils (p = 0.0047), were significantly higher in the bronchoalveolar lavage fluid (BALF) of GCKO animals compared to WT, indicating an increased inflammatory response in the absence of NO-GC. The pronounced fibrotic response in GCKO mice was paralleled by significantly increased levels of transforming growth factor β (TGFβ) in BALF (p = 0.0207), which correlated with the total number of immune cells. Taken together, our data show the effect of NO-GC deletion in the pathology of lung fibrosis and the effect on immune cells in BALF. In summary, our results show that NO-GC has anti-inflammatory and anti-fibrotic properties in the murine lung, very likely by attenuating TGFβ-mediated effects.
Collapse
Affiliation(s)
- Nils Englert
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - Annemarie Aue
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
- Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Andreas Rosenwald
- Institut für Pathologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
6
|
Aue A, Englert N, Harrer L, Schwiering F, Gaab A, König P, Adams R, Schmidtko A, Friebe A, Groneberg D. NO-sensitive guanylyl cyclase discriminates pericyte-derived interstitial from intra-alveolar myofibroblasts in murine pulmonary fibrosis. Respir Res 2023; 24:167. [PMID: 37349733 DOI: 10.1186/s12931-023-02479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The origin of αSMA-positive myofibroblasts, key players within organ fibrosis, is still not fully elucidated. Pericytes have been discussed as myofibroblast progenitors in several organs including the lung. METHODS Using tamoxifen-inducible PDGFRβ-tdTomato mice (PDGFRβ-CreERT2; R26tdTomato) lineage of lung pericytes was traced. To induce lung fibrosis, a single orotracheal dose of bleomycin was given. Lung tissue was investigated by immunofluorescence analyses, hydroxyproline collagen assay and RT-qPCR. RESULTS Lineage tracing combined with immunofluorescence for nitric oxide-sensitive guanylyl cyclase (NO-GC) as marker for PDGFRβ-positive pericytes allows differentiating two types of αSMA-expressing myofibroblasts in murine pulmonary fibrosis: (1) interstitial myofibroblasts that localize in the alveolar wall, derive from PDGFRβ+ pericytes, express NO-GC and produce collagen 1. (2) intra-alveolar myofibroblasts which do not derive from pericytes (but express PDGFRβ de novo after injury), are negative for NO-GC, have a large multipolar shape and appear to spread over several alveoli within the injured areas. Moreover, NO-GC expression is reduced during fibrosis, i.e., after pericyte-to-myofibroblast transition. CONCLUSION In summary, αSMA/PDGFRβ-positive myofibroblasts should not be addressed as a homogeneous target cell type within pulmonary fibrosis.
Collapse
Affiliation(s)
- Annemarie Aue
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
- Zentrum für Interdisziplinäre Schmerzmedizin, Klinik für Anästhesiologie Intensivmedizin, Notfallmedizin und Schmerztherapie, Universitätsklinikum Würzburg, 97080, Würzburg, Germany
| | - Nils Englert
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Leon Harrer
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Fabian Schwiering
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Peter König
- Institut für Anatomie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, 23562, Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Giessen, Germany
| | - Ralf Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Faculty of Medicine, University of Münster, 48149, Münster, Germany
| | - Achim Schmidtko
- Institut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany.
| | - Dieter Groneberg
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| |
Collapse
|
7
|
López-Pingarrón L, Almeida H, Soria-Aznar M, Reyes-Gonzales MC, Rodríguez-Moratinos AB, Muñoz-Hoyos A, García JJ. Interstitial Cells of Cajal and Enteric Nervous System in Gastrointestinal and Neurological Pathology, Relation to Oxidative Stress. Curr Issues Mol Biol 2023; 45:3552-3572. [PMID: 37185756 PMCID: PMC10136929 DOI: 10.3390/cimb45040232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The enteric nervous system (ENS) is organized into two plexuses-submucosal and myenteric-which regulate smooth muscle contraction, secretion, and blood flow along the gastrointestinal tract under the influence of the rest of the autonomic nervous system (ANS). Interstitial cells of Cajal (ICCs) are mainly located in the submucosa between the two muscle layers and at the intramuscular level. They communicate with neurons of the enteric nerve plexuses and smooth muscle fibers and generate slow waves that contribute to the control of gastrointestinal motility. They are also involved in enteric neurotransmission and exhibit mechanoreceptor activity. A close relationship appears to exist between oxidative stress and gastrointestinal diseases, in which ICCs can play a prominent role. Thus, gastrointestinal motility disorders in patients with neurological diseases may have a common ENS and central nervous system (CNS) nexus. In fact, the deleterious effects of free radicals could affect the fine interactions between ICCs and the ENS, as well as between the ENS and the CNS. In this review, we discuss possible disturbances in enteric neurotransmission and ICC function that may cause anomalous motility in the gut.
Collapse
Affiliation(s)
- Laura López-Pingarrón
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Henrique Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Porto University, 4200-135 Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Department of Obstetrics and Gynecology, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Marisol Soria-Aznar
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Marcos C Reyes-Gonzales
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | | | - Antonio Muñoz-Hoyos
- Department of Pediatrics, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Joaquín J García
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Modzelewska B, Drygalski K, Hady HR, Kiełczewska A, Chomentowski A, Koryciński K, Głuszyńska P, Kleszczewski T. Resveratrol Relaxes Human Gastric Smooth Muscles Through High Conductance Calcium-Activated Potassium Channel in a Nitric Oxide-independent Manner. Front Pharmacol 2022; 13:823887. [PMID: 35145416 PMCID: PMC8822120 DOI: 10.3389/fphar.2022.823887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Resveratrol, as a polyphenolic compound that can be isolated from plants, and also a component of red wine has broad beneficial pharmacological properties. The aim was to investigate the role of nitric oxide and potassium channels in resveratrol-induced relaxation of human gastric smooth muscle. Gastric tissues were obtained from patients who underwent sleeve gastrectomy for severe obesity (n = 10 aged 21–48; BMI 48.21 ± 1.14). The mechanical activity from the muscle strips was detected under isometric conditions as the response to increasing concentrations of resveratrol before and after different pharmacological treatments. Resveratrol caused an observable, dose-dependent gastric muscle relaxation. The maximal response caused by the highest concentration of resveratrol was 83.49 ± 2.85% (p < 0.0001) of the control. Preincubation with L-NNA, L-NAME, or ODQ did not prevent the resveratrol-induced relaxation. Apamin, glibenclamide, 4AP or tamoxifen, did not inhibit the relaxing effect of resveratrol, as well. In turn, blocking BKCa by TEA, iberiotoxin, or charybdotoxin resulted in inhibition of resveratrol-induced relaxation (91.08 ± 2.07, p < 0.05; 95.60 ± 1.52, p < 0.01 and 89.58 ± 1.98, p < 0.05, respectively). This study provides the first observation that the relaxant effects of resveratrol in human gastric muscle strips occur directly through BKCa channels and independently of nitric oxide signaling pathways. Furthermore, there is considerable potential for further extensive clinical studies with resveratrol as an effective new drug or health supplement to treat gastrointestinal dyspepsia and other gastric hypermotility disorders.
Collapse
Affiliation(s)
- Beata Modzelewska
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Beata Modzelewska,
| | - Krzysztof Drygalski
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Hady Razak Hady
- Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Aleksandra Kiełczewska
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Chomentowski
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Koryciński
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Paulina Głuszyńska
- Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kleszczewski
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
10
|
Taoro-González L, Cabrera-Pastor A, Sancho-Alonso M, Felipo V. Intracellular and extracelluar cyclic GMP in the brain and the hippocampus. VITAMINS AND HORMONES 2022; 118:247-288. [PMID: 35180929 DOI: 10.1016/bs.vh.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic Guanosine-Monophosphate (cGMP) is implicated as second messenger in a plethora of pathways and its effects are executed mainly by cGMP-dependent protein kinases (PKG). It is involved in both peripheral (cardiovascular regulation, intestinal secretion, phototransduction, etc.) and brain (hippocampal synaptic plasticity, neuroinflammation, cognitive function, etc.) processes. Stimulation of hippocampal cGMP signaling have been proved to be beneficial in animal models of aging, Alzheimer's disease or hepatic encephalopathy, restoring different cognitive functions such as passive avoidance, object recognition or spatial memory. However, even when some inhibitors of cGMP-degrading enzymes (PDEs) are already used against peripheral pathologies, their utility as neurological treatments is still under clinical investigation. Additionally, it has been demonstrated a list of cGMP roles as not second but first messenger. The role of extracellular cGMP has been specially studied in hippocampal function and cognitive impairment in animal models and it has emerged as an important modulator of neuroinflammation-mediated cognitive alterations and hippocampal synaptic plasticity malfunction. Specifically, it has been demonstrated that extracellular cGMP decreases hippocampal IL-1β levels restoring membrane expression of glutamate receptors in the hippocampus and cognitive function in hyperammonemic rats. The mechanisms implicated are still unclear and might involve complex interactions between hippocampal neurons, astrocytes and microglia. Membrane targets for extracellular cGMP are still poorly understood and must be addressed in future studies.
Collapse
Affiliation(s)
- Lucas Taoro-González
- Department of Clinical Psychology, Psychobiology and Methodology, Area of Psycobiology, University of La Laguna, Tenerife, Spain
| | - Andrea Cabrera-Pastor
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain; Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
11
|
Nitric Oxide: From Gastric Motility to Gastric Dysmotility. Int J Mol Sci 2021; 22:ijms22189990. [PMID: 34576155 PMCID: PMC8470306 DOI: 10.3390/ijms22189990] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.
Collapse
|
12
|
Friebe A, Englert N. NO-sensitive guanylyl cyclase in the lung. Br J Pharmacol 2020; 179:2328-2343. [PMID: 33332689 DOI: 10.1111/bph.15345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
In the late 1960s, several labatories identified guanylyl cyclase (GC) as the cGMP-producing enzyme. Subsequently, two different types of GC were described that differed in their cellular localization. Primarily found in the cytosol, nitric oxide (NO)-sensitive guanylyl cyclase (NO-GC) acts as receptor for the signalling molecule NO, in contrast the membrane-bound isoenzyme is activated by natriuretic peptides. The lung compared with other tissues exhibits the highest expression of NO-GC. The enzyme has been purified from lung for biochemical analysis. Although expressed in smooth muscle cells (SMCs) and in pericytes, the function of NO-GC in lung, especially in pericytes, is still not fully elucidated. However, pharmacological compounds that target NO-GC are available and have been implemented for the therapy of pulmonary arterial hypertension. In addition, NO-GC has been suggested as drug target for the therapy of asthma, acute respiratory distress syndrome and pulmonary fibrosis.
Collapse
Affiliation(s)
- Andreas Friebe
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Nils Englert
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger, which critically regulates cardiac pump function and protects from the development of cardiac hypertrophy by acting in various subcellular microdomains. Although clinical studies testing the potential of cGMP elevating drugs in patients suffering from cardiac disease showed promising results, deeper insight into the local actions of these drugs at the subcellular level are indispensable to inspire novel therapeutic strategies. Detailed information on the spatio-temporal dynamics of cGMP production and degradation can be provided by the use of fluorescent biosensors that are capable of monitoring this second messenger at different locations inside the cell with high temporal and spatial resolution. In this review, we will summarize how these emerging new tools have improved our understanding of cardiac cGMP signaling in health and disease, and attempt to anticipate future challenges in the field.
Collapse
|
14
|
Schobesberger S, Wright PT, Poulet C, Sanchez Alonso Mardones JL, Mansfield C, Friebe A, Harding SE, Balligand JL, Nikolaev VO, Gorelik J. β 3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes. eLife 2020; 9:e52221. [PMID: 32228862 PMCID: PMC7138611 DOI: 10.7554/elife.52221] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiomyocyte β3-adrenoceptors (β3-ARs) coupled to soluble guanylyl cyclase (sGC)-dependent production of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) have been shown to protect from heart failure. However, the exact localization of these receptors to fine membrane structures and subcellular compartmentation of β3-AR/cGMP signals underpinning this protection in health and disease remain elusive. Here, we used a Förster Resonance Energy Transfer (FRET)-based cGMP biosensor combined with scanning ion conductance microscopy (SICM) to show that functional β3-ARs are mostly confined to the T-tubules of healthy rat cardiomyocytes. Heart failure, induced via myocardial infarction, causes a decrease of the cGMP levels generated by these receptors and a change of subcellular cGMP compartmentation. Furthermore, attenuated cGMP signals led to impaired phosphodiesterase two dependent negative cGMP-to-cAMP cross-talk. In conclusion, topographic and functional reorganization of the β3-AR/cGMP signalosome happens in heart failure and should be considered when designing new therapies acting via this receptor.
Collapse
Affiliation(s)
- Sophie Schobesberger
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Peter T Wright
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Claire Poulet
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Jose L Sanchez Alonso Mardones
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Catherine Mansfield
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Andreas Friebe
- Physiologisches Institut, University of WürzburgWürzburgGermany
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Julia Gorelik
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| |
Collapse
|
15
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
16
|
Friebe A, Sandner P, Schmidtko A. cGMP: a unique 2nd messenger molecule - recent developments in cGMP research and development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:287-302. [PMID: 31853617 PMCID: PMC7260148 DOI: 10.1007/s00210-019-01779-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) is a unique second messenger molecule formed in different cell types and tissues. cGMP targets a variety of downstream effector molecules and, thus, elicits a very broad variety of cellular effects. Its production is triggered by stimulation of either soluble guanylyl cyclase (sGC) or particulate guanylyl cyclase (pGC); both enzymes exist in different isoforms. cGMP-induced effects are regulated by endogenous receptor ligands such as nitric oxide (NO) and natriuretic peptides (NPs). Depending on the distribution of sGC and pGC and the formation of ligands, this pathway regulates not only the cardiovascular system but also the kidney, lung, liver, and brain function; in addition, the cGMP pathway is involved in the pathogenesis of fibrosis, inflammation, or neurodegeneration and may also play a role in infectious diseases such as malaria. Moreover, new pharmacological approaches are being developed which target sGC- and pGC-dependent pathways for the treatment of various diseases. Therefore, it is of key interest to understand this pathway from scratch, beginning with the molecular basis of cGMP generation, the structure and function of both guanylyl cyclases and cGMP downstream targets; research efforts also focus on the subsequent signaling cascades, their potential crosstalk, and also the translational and, ultimately, the clinical implications of cGMP modulation. This review tries to summarize the contributions to the "9th International cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications" held in Mainz in 2019. Presented data will be discussed and extended also in light of recent landmark findings and ongoing activities in the field of preclinical and clinical cGMP research.
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | - Peter Sandner
- Drug Discovery, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany and Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|