1
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
2
|
Regulation of nutrient and electrolyte absorption in human organoid-derived intestinal epithelial cell monolayers. Transl Res 2022; 248:22-35. [PMID: 35513245 DOI: 10.1016/j.trsl.2022.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
Recently developed human intestinal epithelial 3D organoid cultures are a useful cell culture model to study intestinal transport physiology. From these, 2D monolayer cultures can be generated in which apical transporters are exposed to the medium, thereby better facilitating in vitro investigation of intestinal absorption processes. However, whether nutrient and electrolyte absorption can be physiologically regulated in human organoid-derived monolayers has not been determined. Constitutive nitric oxide (cNO) is known to regulate multiple gastrointestinal physiological functions. Previous studies using in vivo and in vitro mammalian animal models indicate that enhanced intracellular cNO differentially regulates the two primary apical Na transporters in small intestinal epithelial cells. Here, we generated human jejunal organoid-derived monolayers to determine whether apical nutrient and electrolyte transporter function is regulated by cNO in human enterocytes. Western blot analysis and immunocytochemical staining showed that organoid-derived 2D cultures express markers of enterocyte differentiation and form intact monolayers of apical-basal polarized epithelial cells. Uptake studies demonstrated that jejunal monolayers exhibit functional activity of Na-glucose cotransporter 1 (SGLT1; SLC5A1) and Na-H exchanger 3 (NHE3; SLC9A3). In response to physiological increases in cNO, the two primary apical Na transporters were differentially regulated in human intestinal organoid-derived monolayers, across multiple human specimens. An increase in cNO stimulated SGLT1, while NHE3 was inhibited. These results are similar to what is seen in vivo and in vitro in different animal intestinal models. Thus, human jejunal organoid-derived monolayers are an ideal in vitro model to better understand how intestinal nutrient absorption is regulated.
Collapse
|
3
|
Arthur S, Palaniappan B, Afroz S, Sundaram U. Unique Regulation of Coupled NaCl Absorption by Inducible Nitric Oxide in a Spontaneous SAMP1/YitFc Mouse Model of Chronic Intestinal Inflammation. Inflamm Bowel Dis 2021; 27:1804-1812. [PMID: 34019094 PMCID: PMC8528149 DOI: 10.1093/ibd/izab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/09/2022]
Abstract
In the small intestine, Na:H (NHE3) and Cl:HCO3 (DRA or PAT1) exchangers present in the brush border membrane (BBM) of absorptive villus cells are primarily responsible for the coupled absorption of NaCl, the malabsorption of which causes diarrhea, a common symptom of inflammatory bowel disease (IBD). Inducible nitric oxide (iNO), a known mediator of inflammation, is increased in the mucosa of the chronically inflamed IBD intestine. An SAMP1/YitFc (SAMP1) mouse, a spontaneous model of chronic ileitis very similar to human IBD, was used to study alterations in NaCl absorption. The SAMP1 and control AKR mice were treated with I-N(6)-(1-Iminoethyl)-lysine (L-NIL) to inhibit iNO production, and DRA/PAT1 and NHE3 activities and protein expression were studied. Though Na:H exchange activity was unaffected, Cl:HCO3 activity was significantly decreased in SAMP1 mice due to a reduction in its affinity for Cl, which was reversed by L-NIL treatment. Though DRA and PAT1 expressions were unchanged in all experimental conditions, phosphorylation studies indicated that DRA, not PAT1, is affected in SAMP1. Moreover, the altered phosphorylation levels of DRA was restored by L-NIL treatment. Inducible NO mediates the inhibition of coupled NaCl absorption by decreasing Cl:HCO3 but not Na:H exchange. Specifically, Cl:HCO3 exchanger DRA but not PAT1 is regulated at the level of its phosphorylation by iNO in the chronically inflamed intestine.
Collapse
Affiliation(s)
- Subha Arthur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA, United States
| | - Balasubramanian Palaniappan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA, United States
| | - Sheuli Afroz
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA, United States
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA, United States,Address correspondence to: Uma Sundaram, MD, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, United States. E-mail:
| |
Collapse
|
4
|
Palaniappan B, Arthur S, Sundaram VL, Butts M, Sundaram S, Mani K, Singh S, Nepal N, Sundaram U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension. FASEB J 2019; 33:9323-9333. [PMID: 31107610 PMCID: PMC6662973 DOI: 10.1096/fj.201802673r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/23/2019] [Indexed: 01/07/2023]
Abstract
During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.
Collapse
Affiliation(s)
- Balasubramanian Palaniappan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Vijaya Lakshmi Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Molly Butts
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Shanmuga Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Kathiresh Mani
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Niraj Nepal
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
5
|
Palaniappan B, Manoharan P, Arthur S, Singh S, Murughiyan U, Sundaram U. Stimulation of constitutive nitric oxide uniquely and compensatorily regulates intestinal epithelial cell brush border membrane Na absorption. Physiol Rep 2019; 7:e14086. [PMID: 31074207 PMCID: PMC6509550 DOI: 10.14814/phy2.14086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/04/2023] Open
Abstract
In the mammalian small intestine, sodium is primarily absorbed by Na+ /H+ exchange (NHE3) and Na-glucose cotransport (SGLT1) in the brush border membrane (BBM) of villus cells. However, how enhanced cellular constitutive nitric oxide (cNO) may affect NHE3 and SGLT1 remains unclear. Both in vivo in rabbit intestinal villus cells and in vitro IEC-18 cells, administration of NO donor, GSNAP, modestly increased cNO. GSNAP stimulated SGLT1 in villus and IEC-18 cells. The mechanism of stimulation was secondary to an increase in the affinity of SGLT1 for glucose. The change in SGLT1 was not secondary to altered Na-extruding capacity of the cell since Na+ /K+ -ATPase was decreased by GSNAP treatment. In contrast, GSNAP inhibited NHE3 activity in villus cell BBM. The mechanism of NHE3 inhibition was secondary to reduced BBM transporter numbers. These studies demonstrated that the physiological increase in cNO uniquely regulates mammalian small intestinal NHE3 and SGLT1 to maintain Na homeostasis.
Collapse
Affiliation(s)
- Balasubramanian Palaniappan
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Palanikumar Manoharan
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Subha Arthur
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Soudamani Singh
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Usha Murughiyan
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Uma Sundaram
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| |
Collapse
|
6
|
Unique Regulation of Enterocyte Brush Border Membrane Na-Glutamine and Na-Alanine Co-Transport by Peroxynitrite during Chronic Intestinal Inflammation. Int J Mol Sci 2019; 20:ijms20061504. [PMID: 30917504 PMCID: PMC6470611 DOI: 10.3390/ijms20061504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Na-amino acid co-transporters (NaAAcT) are uniquely affected in rabbit intestinal villus cell brush border membrane (BBM) during chronic intestinal inflammation. Specifically, Na-alanine co-transport (ASCT1) is inhibited secondary to a reduction in the affinity of the co-transporter for alanine, whereas Na-glutamine co-transport (B0AT1) is inhibited secondary to a reduction in BBM co-transporter numbers. During chronic intestinal inflammation, there is abundant production of the potent oxidant peroxynitrite (OONO). However, whether OONO mediates the unique alteration in NaAAcT in intestinal epithelial cells during chronic intestinal inflammation is unknown. In this study, ASCT1 and B0AT1 were inhibited by OONO in vitro. The mechanism of inhibition of ASCT1 by OONO was secondary to a reduction in the affinity of the co-transporter for alanine, and secondary to a reduction in the number of co-transporters for B0AT1, which were further confirmed by Western blot analyses. In conclusion, peroxynitrite inhibited both BBM ASCT1 and B0AT1 in intestinal epithelial cells but by different mechanisms. These alterations in the villus cells are similar to those seen in the rabbit model of chronic enteritis. Therefore, this study indicates that peroxynitrite may mediate the inhibition of ASCT1 and B0AT1 during inflammation, when OONO levels are known to be elevated in the mucosa.
Collapse
|