1
|
Gaydarski L, Petrova K, Stanchev S, Pelinkov D, Iliev A, Dimitrova IN, Kirkov V, Landzhov B, Stamenov N. Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. Int J Mol Sci 2025; 26:4022. [PMID: 40362262 PMCID: PMC12071960 DOI: 10.3390/ijms26094022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Hypertension-induced cardiac remodeling is a complex process driven by interconnected molecular and cellular mechanisms that culminate in hypertensive myocardium, characterized by ventricular hypertrophy, fibrosis, impaired angiogenesis, and myocardial dysfunction. This review discusses the histomorphometric changes in capillary density, fibrosis, and mast cells in the hypertensive myocardium and delves into the roles of key regulatory systems, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathways, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling in the pathogenesis of hypertensive heart disease (HHD). Capillary rarefaction, a hallmark of HHD, contributes to myocardial ischemia and fibrosis, underscoring the importance of maintaining vascular integrity. Targeting capillary density (CD) through antihypertensive therapy or angiogenic interventions could significantly improve cardiac outcomes. Myocardial fibrosis, mediated by excessive collagen deposition and influenced by fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-β), plays a pivotal role in the structural remodeling of hypertensive myocardium. While renin-angiotensin-aldosterone system (RAAS) inhibitors show anti-fibrotic effects, more targeted therapies are needed to address fibrosis directly. Mast cells, though less studied in humans, emerge as critical regulators of cardiac remodeling through their release of pro-fibrotic mediators such as histamine, tryptase, and FGF-2. The apelinergic system emerges as a promising therapeutic target due to its vasodilatory, anti-fibrotic, and cardioprotective properties. The system counteracts the deleterious effects of the RAAS and has demonstrated efficacy in preclinical models of hypertension-induced cardiac damage. Despite its potential, human studies on apelin analogs remain limited, warranting further exploration to evaluate their clinical utility. VEGF signaling plays a dual role, facilitating angiogenesis and compensatory remodeling during the early stages of arterial hypertension (AH) but contributing to maladaptive changes when dysregulated. Modulating VEGF signaling through exercise or pharmacological interventions has shown promise in improving CD and mitigating hypertensive cardiac damage. However, VEGF inhibitors, commonly used in oncology, can exacerbate AH and endothelial dysfunction, highlighting the need for therapeutic caution. The NO/NOS pathway is essential for vascular homeostasis and the prevention of oxidative stress. Dysregulation of this pathway, particularly endothelial NOS (eNOS) uncoupling and inducible NOS (iNOS) overexpression, leads to endothelial dysfunction and nitrosative stress in hypertensive myocardium. Strategies to restore NO bioavailability, such as tetrahydrobiopterin (BH4) supplementation and antioxidants, hold potential for therapeutic application but require further validation. Future studies should adopt a multidisciplinary approach to integrate molecular insights with clinical applications, paving the way for more personalized and effective treatments for HHD. Addressing these challenges will not only enhance the understanding of hypertensive myocardium but also improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Kristina Petrova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Dimitar Pelinkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health ‘Prof. Dr. Tzekomir Vodenicharov’, Medical University of Sofia, 1527 Sofia, Bulgaria;
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| |
Collapse
|
2
|
Peixoto P, Vieira-Alves I, Couto GK, Lemos VS, Rossoni LV, Bissoli NS, Dos Santos RL. Sex differences in the participation of endothelial mediators and signaling pathways involved in the vasodilator effect of a selective GPER agonist in resistance arteries of gonadectomized Wistar rats. Life Sci 2022; 308:120917. [PMID: 36044974 DOI: 10.1016/j.lfs.2022.120917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
AIM Endothelial mechanisms underlying the vascular effects of estrogen modulated by the G protein-coupled estrogen receptor (GPER) are not well understood, especially in gonadal sex hormone deprivation. Thus, we investigated vascular function and endothelial signaling pathways involved in the selective activation of GPER in resistance arteries of gonadectomized rats. METHODS Gonadectomy was performed in Wistar rats of both sexes. After 21 days, the animals were euthanized. Concentration-response curves were obtained by cumulative additions of G-1 in third-order mesenteric arteries. The vasodilatory effects of G-1 were evaluated before and after endothelium removal or incubation with pharmacological inhibitors. Tissue protein expression was measured by western blotting. Assays with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) and 2',7' dichlorodihydrofluorescein-diacetate (DCF-DA) were performed in the arteries investigated. Immunolocalization was assessed by immunofluorescence. RESULTS G-1 induced partially endothelium-dependent relaxation in both sexes. The three isoforms of the enzyme nitric oxide synthase contributed to the production and release of nitric oxide in both gonadectomized groups, but the role of inducible nitric oxide synthase is more expressive in males. The mechanistic pathway by which endothelial nitric oxide synthase is phosphorylated appears to differ between sexes, with the rapid signaling pathway phosphatidylinositol-3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3k-Akt-eNOS) being identified for males and mitogen-activated protein kinase/extracellular signal-regulated kinase/endothelial nitric oxide synthase (MEK-ERK-eNOS) for females. The contribution of hydrogen peroxide as an endothelial relaxation mediator seems to be greater in females. CONCLUSION These results provide new insights into the effects of estrogen-induced responses via GPER on vascular function in gonadal sex hormone deprivation.
Collapse
Affiliation(s)
- Pollyana Peixoto
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
3
|
Bernak-Oliveira Â, Guizoni DM, Chiavegatto S, Davel AP, Rossoni LV. The protective role of neuronal nitric oxide synthase in endothelial vasodilation in chronic β-adrenoceptor overstimulation. Life Sci 2021; 285:119939. [PMID: 34506836 DOI: 10.1016/j.lfs.2021.119939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
AIMS Nitric oxide synthases (NOSs) are key enzymes regulating vascular function. Previously, we reported that β-adrenergic (β-AR) overstimulation, a common feature of cardiovascular diseases, did not impair endothelium-dependent vasodilation, although it resulted in endothelial NOS (eNOS) uncoupling and reduced NO bioavailability. In addition to NO, neuronal NOS (nNOS) produces H2O2, which contributes to vasodilation. However, there is limited information regarding vascular β-AR signaling and nNOS. In the present study, we assessed the possible role of nNOS-derived H2O2 and caveolins on endothelial vasodilation function following β-AR overstimulation. MAIN METHODS Male C57BL/6 wild-type and nNOS knockout mice (nNOS-/-) were treated with the β-AR agonist isoproterenol (ISO, 15 mg·kg-1·day-1, s.c.) or vehicle (VHE) for seven days. Relaxation responses of aortic rings were evaluated using wire myograph and H2O2 by Amplex Red. KEY FINDINGS Acetylcholine- or calcium ionophore A23187-induced endothelium-dependent relaxation was similar in aortic rings from VHE and ISO. However, this relaxation was significantly reduced in aortas from ISO compared to VHE when (1) caveolae were disrupted, (2) nNOS was pharmacologically inhibited or genetically suppressed and (3) H2O2 was scavenged. NOS-derived H2O2 production was higher in the aortas of ISO mice than in those of VHE mice. Aortas from ISO-treated mice showed increased expression of caveolin-1, nNOS and catalase, while caveolin-3 expression did not change. SIGNIFICANCE The results suggest a role of caveolin-1 and the nNOS/H2O2 vasodilatory pathway in endothelium-dependent relaxation following β-AR overstimulation and reinforce the protective role of nNOS in cardiovascular diseases associated with high adrenergic tone.
Collapse
Affiliation(s)
- Ângelo Bernak-Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil
| | - Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Silvana Chiavegatto
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil; Department of Psychiatry, Institute of Psychiatry (IPq), University of Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil.
| |
Collapse
|
4
|
Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide 2020; 102:52-73. [PMID: 32590118 DOI: 10.1016/j.niox.2020.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
This review describes and summarizes the role of neuronal nitric oxide synthase (nNOS) on the central nervous system, particularly on brain regions such as the ventrolateral medulla (VLM) and the periaqueductal gray matter (PAG), and on blood vessels and the heart that are involved in the regulation and control of the cardiovascular system (CVS). Furthermore, we shall also review the functional aspects of nNOS during several physiological, pathophysiological, and clinical conditions such as exercise, pain, cerebral vascular accidents or stroke and hypertension. For example, during stroke, a cascade of molecular, neurochemical, and cellular changes occur that affect the nervous system as elicited by generation of free radicals and nitric oxide (NO) from vulnerable neurons, peroxide formation, superoxides, apoptosis, and the differential activation of three isoforms of nitric oxide synthases (NOSs), and can exert profound effects on the CVS. Neuronal NOS is one of the three isoforms of NOSs, the others being endothelial (eNOS) and inducible (iNOS) enzymes. Neuronal NOS is a critical homeostatic component of the CVS and plays an important role in regulation of different systems and disease process including nociception. The functional and physiological roles of NO and nNOS are described at the beginning of this review. We also elaborate the structure, gene, domain, and regulation of the nNOS protein. Both inhibitory and excitatory role of nNOS on the sympathetic autonomic nervous system (SANS) and parasympathetic autonomic nervous system (PANS) as mediated via different neurotransmitters/signal transduction processes will be explored, particularly its effects on the CVS. Because the VLM plays a crucial function in cardiovascular homeostatic mechanisms, the neuroanatomy and cardiovascular regulation of the VLM will be discussed in conjunction with the actions of nNOS. Thereafter, we shall discuss the up-to-date developments that are related to the interaction between nNOS and cardiovascular diseases such as hypertension and stroke. Finally, we shall focus on the role of nNOS, particularly within the PAG in cardiovascular regulation and neurotransmission during different types of pain stimulus. Overall, this review focuses on our current understanding of the nNOS protein, and provides further insights on how nNOS modulates, regulates, and controls cardiovascular function during both physiological activity such as exercise, and pathophysiological conditions such as stroke and hypertension.
Collapse
Affiliation(s)
- Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| | - Isabella Powell
- All American Institute of Medical Sciences, Black River, Jamaica
| | | | - Kevin Chaitoff
- Interventional Rehabilitation of South Florida, West Palm Beach, FL, USA
| | - Surya M Nauli
- Chapman University and University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Costa ED, Silva JF, Garcia DC, Wainstein AJ, Rezende BA, Tostes RC, Teixeira MM, Cortes SF, Lemos VS. Decreased expression of neuronal nitric oxide synthase contributes to the endothelial dysfunction associated with cigarette smoking in human. Nitric Oxide 2020; 98:20-28. [DOI: 10.1016/j.niox.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
|