1
|
Pokidova ОV, Novikova VO, Emel'yanova NS, Mazina LM, Konyukhova AS, Kulikov AV, Shilov GV, Ovanesyan NS, Stupina TS, Sanina NA. Structure, properties, and decomposition in biological systems of a new nitrosyl iron complex with 2-methoxythiophenolyls, promising for the treatment of cardiovascular diseases. J Inorg Biochem 2025; 262:112747. [PMID: 39366101 DOI: 10.1016/j.jinorgbio.2024.112747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
A new promising binuclear tetranitrosyl iron complex with 2-methoxythiophenolyl of the composition [Fe2(C7H7OS)2(NO)4] (complex 1), which acts on the therapeutic targets of cardiovascular diseases, guanylate and adenylate cyclase, has been synthesized. X-ray diffraction data show the presence of two isoforms of complex 1; according to quantum chemical calculations, the structure of only the trans isomer is stable in solutions. The processes of transformation of complex 1 in DMSO, in aqueous solutions, as well as in the presence of bovine serum albumin, reduced glutathione, and mucin were studied. DMSO promotes the decomposition of the original complex 1 into mononuclear products. In biological systems, the mechanisms of decomposition of the complex 1 differ from aqueous solutions. In albumin solution, a gradual formation of a high-molecular-weight dinitrosyl complex is observed, obtained by coordinating the [Fe(NO)2]+ fragment with the amino acid groups of the protein. In the presence of mucin, an EPR signal from stable mononitrosyl products is observed. The introduction of glutathione into the system of the complex 1 leads to the replacement of one initial thioligand with glutathione. In the model systems under study, a more efficient and prolonged generation of NO groups is observed compared to a buffer solution. The obtained data on the influence of the environment on the properties of the complex 1 in combination with a study of their effect on enzymes allow us to recommend it for further study as a potential drug with vasodilator, antianginal, and hypotensive properties.
Collapse
Affiliation(s)
- Оlesya V Pokidova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation.
| | - Veronika O Novikova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation
| | - Nina S Emel'yanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation
| | - Ludmila M Mazina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation
| | - Alina S Konyukhova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1, 119991 Moscow, Russian Federation
| | - Alexander V Kulikov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation
| | - Gennadii V Shilov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation
| | - Nikolai S Ovanesyan
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation
| | - Tatyana S Stupina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation
| | - Natalia A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow region, prosp. Akad. Semenova, 1, 142432 Chernogolovka, Russian Federation; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1, 119991 Moscow, Russian Federation; Scientific and Educational Center "Medical Chemistry" in Chernogolovka, Federal State Autonomous Educational Institution of Higher Education "State University of Education", Moscow Region, st. Vera Voloshina, 24, 141014 Mytishchi, Russian Federation
| |
Collapse
|
2
|
Pokidova OV, Novikova VO, Emel'yanova NS, Kormukhina AY, Kulikov AV, Utenyshev AN, Lazarenko VA, Ovanesyan NS, Starostina AA, Sanina NA. A nitrosyl iron complex with 3.4-dichlorothiophenolyl ligands: synthesis, structures and its reactions with targets - carriers of nitrogen oxide (NO) in vivo. Dalton Trans 2023; 52:2641-2662. [PMID: 36744818 DOI: 10.1039/d2dt04047f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, a new binuclear nitrosyl complex with 3.4-dichlorothiophenolyl ligands [Fe2(SC6H3Cl2)2(NO)4] has been synthesized. Nitrosyl iron complexes (NICs) are systems for the storage and delivery of NO in the body. There is a dynamic equilibrium between dinitrosyl iron units bound to low molecular weight ligands and high molecular weight (protein) ligands in vivo. From this point of view, the transformation of the studied complex in DMSO and buffer, as well as in biological systems, has been analyzed. In DMSO, it decomposes into mononuclear NICs, which quickly decay in buffer solutions with NO release. The high molecular weight product is formed as a result of the binding of the complex to bovine serum albumin (the Stern-Volmer constant is 2.1 × 105 M-1). In this case, the complex becomes a prolonged NO-donor. Such a long-term effect has been observed for the first time. Similarly, in a system with oxyhemoglobin, NO generation is slower; the UV-vis spectra show a gradual formation of methemoglobin. On the other hand, reduced glutathione has little effect on the NO-donor properties of the complex despite the fact that ligand substitution is observed in the system and a binuclear product is formed. Mucin binds the complex, and the decomposition mechanism is different from that for buffer solutions. Thus, these proteins and glutathione are able to participate in the transformation of the complex and modulate its properties as a potential drug.
Collapse
Affiliation(s)
- Olesya V Pokidova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Veronika O Novikova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Nina S Emel'yanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Alexandra Yu Kormukhina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation
| | - Alexander V Kulikov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation
| | - Andrey N Utenyshev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Vladimir A Lazarenko
- National Research Center 'Kurchatov Institute', pl. Academician Kurchatov, 1, 123182, Moscow, Russian Federation
| | - Nikolai S Ovanesyan
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Arina A Starostina
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation
| | - Natalya A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation.,Scientific and Educational Center "Medical Chemistry", Moscow State Regional Pedagogical University, st. Vera Voloshina, 24, 141014 Mytishchi, Moscow Region, Russian Federation
| |
Collapse
|
3
|
Sanina NA, Kozub GI, Kondrat'eva TA, Korchagin DV, Shilov GV, Morgunov RB, Ovanesyan NS, Kulikov AV, Stupina TS, Terent'ev AA, Aldoshin SM. Anionic dinitrosyl iron complexes – new nitric oxide donors with selective toxicity to human glioblastoma cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Pokidova OV, Emel'yanova NS, Kormukhina AY, Novikova VO, Kulikov AV, Kotelnikov AI, Sanina NA. Albumin as a prospective carrier of the nitrosyl iron complex with thiourea and thiosulfate ligands under aerobic conditions. Dalton Trans 2022; 51:6473-6485. [PMID: 35394482 DOI: 10.1039/d2dt00291d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-molecular-weight dinitrosyl iron complexes (DNICs) are formed in living systems and are a stable depot of nitrogen monoxide (NO). In this work, using experimental and theoretical methods, we investigated the interaction of their synthetic analog, a promising cardiotropic complex of the composition [Fe(SC(NH2)2)2(NO)2]2[Fe2(S2O3)2(NO)4], with bovine serum albumin (BSA) in aqueous aerobic solutions. We suggested that, under these conditions, the decomposition product of the initial complex with oxygen, the [Fe(NO)(NO2)]+ fragment, can bind in the hydrophobic pocket of the protein. As a result of this interaction, high-molecular-weight Fe(Cys34)(His39)(NO)(NO2) is formed. The binding constant of the complex with protein measured by the quenching of intrinsic fluorescence of BSA is 7.2 × 105 M-1. According to EPR and UV-spectroscopy data, the interaction of the complex with the protein leads to its significant stabilization. In addition to coordination binding, the studied complex can be adsorbed onto the protein surface due to weak intermolecular interactions, resulting in the prolonged generation of NO.
Collapse
Affiliation(s)
- Olesya V Pokidova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation.
| | - Nina S Emel'yanova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Alexandra Yu Kormukhina
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Veronika O Novikova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation.
| | - Alexander V Kulikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Alexander I Kotelnikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Natalia A Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation.,Scientific and Educational Center "Medical Chemistry" of Moscow State Regional University, 24 Vera Voloshina St., 141014 Mytishchi, Moscow Region, Russian Federation
| |
Collapse
|
5
|
Faingold II, Poletaeva DA, Soldatova YV, Smolina AV, Pokidova OV, Kulikov AV, Sanina NA, Kotelnikova RA. Effects of albumin-bound nitrosyl iron complex with thiosulfate ligands on lipid peroxidation and activities of mitochondrial enzymes in vitro. Nitric Oxide 2021; 117:46-52. [PMID: 34678508 DOI: 10.1016/j.niox.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO) mediates diverse physiological processes in living organisms. Small molecular NO donors usually lack stability and have a short half-life in human tissues, limiting the therapeutic application. The anionic tetranitrosyl iron complex with thiosulfate ligands (TNIC) is one of the most promising NO donors. This study shows that bovine serum albumin (BSA) can effectively stabilize the TNIC complex under aerobic (physiological) conditions, which contributes to its prolonged action as NO donor. Our results demonstrated that TNIC-BSA inhibits formation of TBARS - standard biomarker for the lipid peroxidation induced oxidative stress. Also, it was found that TNIC-BSA inhibits the catalytic activity of mitochondrial membrane-bound enzymes: cytochrome c oxidase and monoamine oxidase A. Together, these results demonstrate that, stabilization of TNIC with BSA opens up the possibility of its practical application in chemotherapy of socially significant diseases.
Collapse
Affiliation(s)
- I I Faingold
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - D A Poletaeva
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation.
| | - Yu V Soldatova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - A V Smolina
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - O V Pokidova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - A V Kulikov
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| | - N A Sanina
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation; Medicinal Chemistry Research and Education Center, Moscow Region State University, Mytishchy, Moscow region, Russian Federation
| | - R A Kotelnikova
- Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
6
|
Pokidova OV, Kormukhina AY, Kotelnikov AI, Rudneva TN, Lyssenko KA, Sanina NA. Features of the decomposition of cationic nitrosyl iron complexes with N-ethylthiourea and penicillamine ligands in the presence of albumin. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Pokidova ОV, Luzhkov VB, Emel'yanova NS, Krapivin VB, Kotelnikov AI, Sanina NA, Aldoshin SM. Effect of albumin on the transformation of dinitrosyl iron complexes with thiourea ligands. Dalton Trans 2020; 49:12674-12685. [DOI: 10.1039/d0dt02452j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BSA binds the Fe(NO)2+ fragment of DNIC and multiple molecules of [Fe(SC(NH2)2)2(NO)2]+ that prolongs NO donation by this DNIC.
Collapse
Affiliation(s)
- Оlesya V. Pokidova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Victor B. Luzhkov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Nina S. Emel'yanova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Vladimir B. Krapivin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Alexander I. Kotelnikov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Natalia A. Sanina
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| |
Collapse
|