1
|
Alemu BK, Tommasi S, Hulin JA, Meyers J, Mangoni AA. Current knowledge on the mechanisms underpinning vasculogenic mimicry in triple negative breast cancer and the emerging role of nitric oxide. Biomed Pharmacother 2025; 186:118013. [PMID: 40147105 DOI: 10.1016/j.biopha.2025.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Vasculogenic mimicry (VM) is the process by which cancer cells form vascular-like channels to support their growth and dissemination. These channels lack endothelial cells and are instead lined by the tumour cells themselves. VM was first reported in uveal melanomas but has since been associated with other aggressive solid tumours, such as triple-negative breast cancer (TNBC). In TNBC patients, VM is associated with tumour aggressiveness, drug resistance, metastatic burden, and poor prognosis. The lack of effective targeted therapies for TNBC has stimulated research on the mechanisms underpinning VM in order to identify novel druggable targets. In recent years, studies have highlighted the role of nitric oxide (NO), the NO synthesis inhibitor, asymmetric dimethylarginine (ADMA), and dimethylarginine dimethylaminohydrolase 1 (DDAH1), the key enzyme responsible for ADMA metabolism, in regulating VM. Specifically, NO inhibition through downregulation of DDAH1 and consequent accumulation of ADMA appears to be a promising strategy to suppress VM in TNBC. This review discusses the current knowledge regarding the molecular pathways underpinning VM in TNBC, anti-VM therapies under investigation, and the emerging role of NO regulation in VM.
Collapse
Affiliation(s)
- Belete Kassa Alemu
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Injibara University, College of Medicine and Health Sciences, Department of Pharmacy, Injibara, Ethiopia
| | - Sara Tommasi
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Julie-Ann Hulin
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jai Meyers
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Arduino A Mangoni
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
2
|
Caturano A, Galiero R, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Sardu C, Russo V, Vetrano E, Monda M, Marfella R, Rinaldi L, Sasso FC. The Dual Burden: Exploring Cardiovascular Complications in Chronic Kidney Disease. Biomolecules 2024; 14:1393. [PMID: 39595570 PMCID: PMC11591570 DOI: 10.3390/biom14111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic kidney disease (CKD) represents a significant global health challenge, affecting millions of individuals and leading to substantial morbidity and mortality. This review aims to explore the epidemiology, cardiovascular complications, and management strategies associated with CKD, emphasizing the importance of preventing cardiovascular disease and early intervention. CKD is primarily driven by conditions such as diabetes mellitus, hypertension, and cardiovascular diseases, which often coexist and exacerbate renal impairment. Effective management requires a multifaceted approach, including lifestyle modifications, pharmacological interventions, and regular monitoring. Dietary changes, such as sodium restriction and a controlled intake of phosphorus and potassium, play a vital role in preserving renal function. Pharmacological therapies, particularly angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and emerging agents like SGLT2 inhibitors, have shown efficacy in slowing disease progression and improving patient outcomes. Furthermore, patients undergoing dialysis face increased cardiovascular risk, necessitating comprehensive management strategies to address both renal and cardiac health. As the landscape of CKD treatment evolves, ongoing research into novel therapeutic options and personalized medical approaches are essential. This review underscores the urgent need for awareness, education, and effective preventive measures to mitigate the burden of CKD and enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
3
|
Zhu C, Miao L, Wei K, Shi D, Gao J. Coronary microvascular dysfunction. Microvasc Res 2024; 153:104652. [PMID: 38211894 DOI: 10.1016/j.mvr.2024.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Coronary microvascular dysfunction (CMD) is a key mechanism underlying ischemic heart disease (IHD), yet its diagnosis and treatment remain challenging. This article presents a comprehensive overview of CMD research, covering its pathogenesis, diagnostic criteria, assessment techniques, risk factors, and therapeutic strategies. Additionally, it highlights the prospects for future CMD research. The article aims at advocating early and effective intervention for CMD and improving the prognosis of IHD.
Collapse
Affiliation(s)
- Chunlin Zhu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kangkang Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Zoccali C, Mallamaci F, Adamczak M, de Oliveira RB, Massy ZA, Sarafidis P, Agarwal R, Mark PB, Kotanko P, Ferro CJ, Wanner C, Burnier M, Vanholder R, Wiecek A. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc Res 2023; 119:2017-2032. [PMID: 37249051 PMCID: PMC10478756 DOI: 10.1093/cvr/cvad083] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 05/31/2023] Open
Abstract
Chronic kidney disease (CKD) is classified into five stages with kidney failure being the most severe stage (stage G5). CKD conveys a high risk for coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. Cardiovascular complications are the most common causes of death in patients with kidney failure (stage G5) who are maintained on regular dialysis treatment. Because of the high death rate attributable to cardiovascular (CV) disease, most patients with progressive CKD die before reaching kidney failure. Classical risk factors implicated in CV disease are involved in the early stages of CKD. In intermediate and late stages, non-traditional risk factors, including iso-osmotic and non-osmotic sodium retention, volume expansion, anaemia, inflammation, malnutrition, sympathetic overactivity, mineral bone disorders, accumulation of a class of endogenous compounds called 'uremic toxins', and a variety of hormonal disorders are the main factors that accelerate the progression of CV disease in these patients. Arterial disease in CKD patients is characterized by an almost unique propensity to calcification and vascular stiffness. Left ventricular hypertrophy, a major risk factor for heart failure, occurs early in CKD and reaches a prevalence of 70-80% in patients with kidney failure. Recent clinical trials have shown the potential benefits of hypoxia-inducible factor prolyl hydroxylase inhibitors, especially as an oral agent in CKD patients. Likewise, the value of proactively administered intravenous iron for safely treating anaemia in dialysis patients has been shown. Sodium/glucose cotransporter-2 inhibitors are now fully emerged as a class of drugs that substantially reduces the risk for CV complications in patients who are already being treated with adequate doses of inhibitors of the renin-angiotensin system. Concerted efforts are being made by major scientific societies to advance basic and clinical research on CV disease in patients with CKD, a research area that remains insufficiently explored.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, 315 E, 62nd St., New York, NY 10065, USA
- Associazione Ipertensione Nefrologia e Trapianto Renale (IPNET) c/o Nefrologia e CNR, Grande Ospedale Metropolitano, Contrada Camporeale, 83031 Ariano Irpino Avellino, Italy
| | - Francesca Mallamaci
- Nephrology and Transplantation Unit, Grande Ospedale Metropolitano Reggio Cal and CNR-IFC, Via Giuseppe Melacrino 21, 89124 Reggio Calabria, Italy
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska 20-24 St. 40-027 Katowice, Poland
| | - Rodrigo Bueno de Oliveira
- Department of Internal Medicine (Nephrology), School of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Ziad A Massy
- Ambroise Paré University Hospital, APHP, Boulogne Billancourt/Paris, and INSERM U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Equipe 5, Paris-Saclay University (PSU) and University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), FCRIN INI-CRCT, Villejuif, France
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rajiv Agarwal
- Indiana University School of Medicine and Richard L. Roudebush VA Medical Center, 1481 W 10th St, Indianapolis, IN 46202, USA
| | - Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Peter Kotanko
- Renal Research Institute, LLC Icahn School of Medicine at Mount Sinai, 315 East 62nd Street, 3rd Floor, New York, NY 10065, USA
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham, Birmingham, UK
| | - Christoph Wanner
- Division of Nephrology, University Hospital of Würzburg, Würzburg, Germany
| | - Michel Burnier
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska 20-24 St. 40-027 Katowice, Poland
| |
Collapse
|
5
|
Huang SS, Huang WC, Tsai CT, Chen YY, Lee SH, Lu TM. Plasma asymmetric dimethylarginine is associated with vulnerable plaque and long-term outcomes in stable coronary artery disease. Sci Rep 2023; 13:7541. [PMID: 37160906 PMCID: PMC10169809 DOI: 10.1038/s41598-023-32728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/31/2023] [Indexed: 05/11/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA) is considered to be an atherogenic molecule. We aimed to investigate the relationship between ADMA and plaque vulnerability assessed by optical coherence tomography (OCT) in patients with stable coronary artery disease (CAD). Two hundred and forty-five patients with stable CAD undergoing OCT-guided percutaneous coronary intervention were included in this study and were divided into two groups according to their ADMA levels. Micro-vessel, macrophage accumulation, thin-cap fibroatheroma, intra-plaque calcium and lipid core content, and vulnerable score (VS) were evaluated by OCT analysis. The patients with higher ADMA levels had significantly higher calcium and lipid content (p < 0.001, respectively). There were significantly more micro-vessel and macrophage (32.8%, p = 0.004 and 52.5%, p < 0.001, respectively) and higher VS (87.7 ± 17.6, p < 0.001) in the higher ADMA group. Moreover, plasma ADMA level was significantly correlated with the intra-plaque lipid, calcium content and VS (p < 0.001, respectively). Plasma ADMA level was identified as an independent predictor of future adverse cardiovascular events, following OCT-guided PCI. In patients with stable CAD, higher plasma ADMA levels were significantly associated with the presence of intra-plaque lipid, calcification, vulnerable plaque, and poor long-term outcomes.
Collapse
Affiliation(s)
- Shao-Sung Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Chieh Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Chuan-Tsai Tsai
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ying-Ying Chen
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Sheng-Hua Lee
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tse-Min Lu
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Department of Health Care Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
6
|
Papageorgiou N, Theofilis P, Oikonomou E, Lazaros G, Sagris M, Tousoulis D. Asymmetric Dimethylarginine as a Biomarker in Coronary Artery Disease. Curr Top Med Chem 2023; 23:470-480. [PMID: 36515020 DOI: 10.2174/1568026623666221213085917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
As atherosclerosis remains a leading cause of morbidity and mortality worldwide despite the advances in its medical and interventional management, the identification of markers associated with its incidence and prognosis constitutes an appealing prospect. In this regard, asymmetric dimethylarginine (ADMA), a well-studied endogenous endothelial nitric oxide synthase inhibitor, represents a core mediator of endothelial dysfunction in atherosclerotic diseases. Given the pathophysiologic background of this molecule, its importance in the most frequent atherosclerotic manifestation, coronary artery disease (CAD), has been extensively studied in the past decades. The available evidence suggests elevation of ADMA in the presence of common cardiovascular risk factors, namely diabetes mellitus, arterial hypertension, and hypertriglyceridemia, being related to endothelial dysfunction and incident major adverse cardiovascular events in these groups of patients. Moreover, ADMA is associated with CAD occurrence and severity, as well as its prognosis, especially in populations with renal impairment. Interestingly, even in the absence of obstructive CAD, increased ADMA may indicate coronary endothelial dysfunction and epicardial vasomotor dysfunction, which are prognostication markers for incident cardiovascular events. In the case of acute coronary syndromes, high ADMA levels signify an augmented risk of incomplete ST-segment elevation resolution and poorer prognosis. Abnormal ADMA elevations may indicate adverse outcomes following percutaneous or surgical coronary revascularization, such as in-stent restenosis, graft patency, and hard cardiovascular endpoints. Finally, since its association with inflammation is significant, chronic inflammatory conditions may present with coronary endothelial dysfunction and subclinical coronary atherosclerosis by means of increased coronary artery calcium, with augmented ADMA acting as a biomarker.
Collapse
Affiliation(s)
- Nikolaos Papageorgiou
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Panagiotis Theofilis
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, Sotiria Regional Hospital for Chest Diseases, University of Athens Medical School, Athens, Greece
| | - George Lazaros
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
7
|
Wang S, Deng Z, Zhang H, Zhang R, Yan D, Zheng X, Jia W, Hu C. The effect of haptoglobin genotype on the association of asymmetric dimethylarginine and DDAH 1 polymorphism with diabetic macroangiopathy. Cardiovasc Diabetol 2022; 21:265. [PMID: 36461077 PMCID: PMC9716717 DOI: 10.1186/s12933-022-01702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Dimethylarginine dimethylaminohydrolase (DDAH) 1 maintains the bioavailability of nitric oxide by degrading asymmetric dimethylarginine (ADMA). Here, we aimed to investigate the effect of haptoglobin (Hp) genotype on the association of ADMA and DDAH 1 polymorphism with diabetic macroangiopathy. METHODS In stage 1, 90 Chinese participants with type 2 diabetes were enrolled to measure a panel of targeted metabolites, including ADMA, using tandem mass spectrometry (BIOCRATES AbsoluteIDQ™ p180 kit). In stage 2, an independent cohort of 2965 Chinese patients with type 2 diabetes was recruited to analyze the effect of Hp genotype on the association between DDAH 1 rs233109 and diabetic macroangiopathy. Hp genotypes were detected using a validated assay based on the TaqMan method. DDAH 1 rs233109 was genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy using the MassARRAY platform. RESULTS In stage 1, serum ADMA levels correlated with common Hp genotypes (β ± SE = - 0.049 ± 0.023, P = 0.035), but not with diabetic macroangiopathy (P = 0.316). In stage 2, the distribution of DDAH 1 rs233109 genotype frequencies was 15% (CC), 47% (TC), and 38% (TT), which was in Hardy-Weinberg equilibrium (P = 0.948). A significant Hp genotype by rs 233109 genotype interaction effect on diabetic macroangiopathy was found (P = 0.017). After adjusting for confounders, patients homozygous for rs233109 CC were more likely to develop diabetic macroangiopathy than those carrying TT homozygotes in the Hp 2-2 subgroup [odds ratio = 1.750 (95% confidence interval, 1.101-2.783), P = 0.018]. CONCLUSION Hp genotype affects the association between DDAH 1 rs233109 and diabetic macroangiopathy in Chinese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Shiyun Wang
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Zixuan Deng
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Hong Zhang
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Rong Zhang
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Dandan Yan
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Xiaojiao Zheng
- grid.16821.3c0000 0004 0368 8293Center for Translational Medicine, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Weiping Jia
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Cheng Hu
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China ,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, 6600 Nanfeng Road, 201499 Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Soós B, Hamar A, Pusztai A, Czókolyová M, Végh E, Szamosi S, Pethő Z, Gulyás K, Kerekes G, Szántó S, Szűcs G, Christians U, Klawitter J, Seres T, Szekanecz Z. Effects of tofacitinib therapy on arginine and methionine metabolites in association with vascular pathophysiology in rheumatoid arthritis: A metabolomic approach. Front Med (Lausanne) 2022; 9:1011734. [PMID: 36438060 PMCID: PMC9684209 DOI: 10.3389/fmed.2022.1011734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) has been associated with changes in lipid, arginine and NO metabolism with increased cardiovascular (CV) risk. The aim of this study is to evaluate the effect of tofacitinib, a Janus kinase (JAK) inhibitor, on arginine and methionine metabolism in correlation with inflammation, functional and pathological vascular changes during one-year treatment of patients with RA. Materials and methods Thirty RA patients with active disease were treated with either 5 mg bid or 10 mg bid tofacitinib for 12 months. We determined DAS28, CRP, IgM rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCP) levels. We assessed brachial artery flow-mediated vasodilation (FMD), carotid intima-media thickness (IMT) and pulse-wave velocity (PWV) by ultrasound at baseline and after 6 and 12 months. We also determined plasma L-arginine, L-citrulline, L-ornithine, inducible nitric oxide synthase (iNOS), asymmetric (ADMA) and symmetric dimethylarginine (SDMA), L-N-monomethyl-arginine (L-NMMA), cysteine, homocysteine, and methionine levels at these time points. Results Twenty-six patients (13 on each arm) completed the study. CRP, ESR and DAS28 decreased significantly during one-year treatment with tofacitinib. Arginine and ADMA showed a negative univariate correlation with CRP but not with FMD, PWV or IMT. Tofacitinib at 10 mg bid significantly increased L-arginine, L-ornithine, iNOS and methionine levels after 12 months. ADMA and SDMA levels did not change in our study. Methionine showed negative correlation with FMD at baseline and positive correlation with PWV after 12 months. No change was observed in FMD and PWV but a significant increase was measured in IMT at 6 and 12 months. Multivariate analysis indicated variable correlations of L-arginine, L-citrulline, ADMA, L-NMMA, homocysteine and methionine with DAS28, CRP, ESR and RF but not with anti-CCP after one-year treatment. With respect to vascular pathophysiology, only PWV and methionine correlated with each other. Conclusion One-year tofacitinib treatment suppressed systemic inflammation and improved functional status in RA. FMD, PWV have not been affected by one-year tofacitinib treatment., while IMT increased further despite treatment. Increased arginine and methionine might contribute to the anti-inflammatory effects of tofacitinib. Increased arginine availability with no changing ADMA may protect FMD and PWV from deterioration. The increase of IMT in the anti-inflammatory environment cannot be explained by arginine or methionine metabolism in this study.
Collapse
Affiliation(s)
- Boglárka Soós
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Hamar
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Pusztai
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Czókolyová
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Végh
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Szamosi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pethő
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Gulyás
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Kerekes
- Intensive Care Unit, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Szántó
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Sports Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tamás Seres
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zoltán Szekanecz,
| |
Collapse
|
9
|
Huang S, Luo Q, Huang J, Wei J, Wang S, Hong C, Qiu P, Li C. A Cluster of Metabolic-Related Genes Serve as Potential Prognostic Biomarkers for Renal Cell Carcinoma. Front Genet 2022; 13:902064. [PMID: 35873461 PMCID: PMC9301649 DOI: 10.3389/fgene.2022.902064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of renal cancer, characterized by the dysregulation of metabolic pathways. RCC is the second highest cause of death among patients with urologic cancers and those with cancer cell metastases have a 5-years survival rate of only 10–15%. Thus, reliable prognostic biomarkers are essential tools to predict RCC patient outcomes. This study identified differentially expressed genes (DEGs) in the gene expression omnibus (GEO) database that are associated with pre-and post-metastases in clear cell renal cell carcinoma (ccRCC) patients and intersected these with metabolism-related genes in the Kyoto encyclopedia of genes and genomes (KEGG) database to identify metabolism-related DEGs (DEMGs). GOplot and ggplot packages for gene ontology (GO) and KEGG pathway enrichment analysis of DEMGs with log (foldchange) (logFC) were used to identify metabolic pathways associated with DEMG. Upregulated risk genes and downregulated protective genes among the DEMGs and seven independent metabolic genes, RRM2, MTHFD2, AGXT2, ALDH6A1, GLDC, HOGA1, and ETNK2, were found using univariate and multivariate Cox regression analysis, intersection, and Lasso-Cox regression analysis to establish a metabolic risk score signature (MRSS). Kaplan-Meier survival curve of Overall Survival (OS) showed that the low-risk group had a significantly better prognosis than the high-risk group in both the training cohort (p < 0.001; HR = 2.73, 95% CI = 1.97–3.79) and the validation cohort (p = 0.001; HR = 2.84, 95% CI = 1.50–5.38). The nomogram combined with multiple clinical information and MRSS was more effective at predicting patient outcomes than a single independent prognostic factor. The impact of metabolism on ccRCC was also assessed, and seven metabolism-related genes were established and validated as biomarkers to predict patient outcomes effectively.
Collapse
|
10
|
Fernández-Macías JC, Ochoa-Martínez AC, Pérez-López AA, Pérez-López AL, Neri-Maldonado I, Piña-López IG, Pérez-Maldonado IN. The interplay between exposure to PAHs and MTHFR C677T polymorphism on cardiovascular risk biomarkers in Mexican women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48466-48476. [PMID: 35192163 DOI: 10.1007/s11356-022-19245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Environmental and genetic factors are recognized as risk determinants in the onset and development of CVDs. However, the interaction between both factors on CVDs risk is not still completely clarified. Therefore, the objective of this study was to evaluate the effect of the interaction between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and polycyclic aromatic hydrocarbon (PAH) exposure (gene-environment interaction) on cardiovascular risk biomarkers in Mexican women. A cross-sectional study was completed with the participation of 390 healthy women. For all enrolled women, anthropometric measurements, serum biochemical analyses, atherogenic indexes, and serum concentrations of biomolecules used as CVD risk biomarkers were obtained. 1-Hydroxypyrene (1-OHP) was measured in urine, as an exposure biomarker of PAHs. The mean urinary level of 1-OHP in the assessed population was 1.23 ± 1.40 μmol/mol creatinine. The allelic frequency (MTHFR C677T polymorphism) identified in the registered individuals was 68.0% for the mutant allele (T-allele). Significant positive associations were detected between urinary 1-OHP levels and serum asymmetric dimethylarginine (ADMA) concentrations (p < 0.05) and atherogenic index of plasma (AIP) values (p < 0.05). Also, women with the TT genotype of the MTHFR C677T enzyme have the highest serum ADMA levels (p < 0.05) and AIP values (p < 0.05) compared to women grouped as CC genotype and CT genotype. Besides, the findings in this study suggest an interaction between environmental (PAHs exposure) and genetic (MTHFR C677T polymorphism) factors on cardiovascular risk markers (ADMA and AIP). According to the usefulness of AIP and ADMA, an increased cardiovascular risk is notable in highly exposed individuals to PAHs with the polymorphic genotype (TT) of the MTHFR enzyme. Therefore, intervention programs in the target communities are required to diminish the cardiovascular risk of the assessed individuals.
Collapse
Affiliation(s)
- Juan Carlos Fernández-Macías
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Angeles Catalina Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Anette Aylin Pérez-López
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Amairani Lizbeth Pérez-López
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ignacio Neri-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Iris Gabriela Piña-López
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Iván Nelinho Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
11
|
Kong ASY, Lai KS, Hee CW, Loh JY, Lim SHE, Sathiya M. Oxidative Stress Parameters as Biomarkers of Cardiovascular Disease towards the Development and Progression. Antioxidants (Basel) 2022; 11:antiox11061175. [PMID: 35740071 PMCID: PMC9219727 DOI: 10.3390/antiox11061175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, with unhealthy lifestyles today greatly increasing the risk. Over the decades, scientific investigation has been carried out on reactive oxygen species (ROS) and their resultant oxidative stress based on their changes made on biological targets such as lipids, proteins, and DNA. Since the existing clinical studies with antioxidants failed to provide relevant findings on CVD prediction, the focus has shifted towards recognition of oxidised targets as biomarkers to predict prognosis and response to accurate treatment. The identification of redox markers could help clinicians in providing risk stratification for CVD events beyond the traditional prognostic and diagnostic targets. This review will focus on how oxidant-related parameters can be applied as biomarkers for CVD based on recent clinical evidence.
Collapse
Affiliation(s)
- Amanda Shen-Yee Kong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (K.S.L.); (S.H.E.L.)
| | - Cheng-Wan Hee
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia;
| | - Jiun Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Swee Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (K.S.L.); (S.H.E.L.)
| | - Maran Sathiya
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
- Correspondence:
| |
Collapse
|