1
|
Li K, Luo Y, Hu W, Yang J, Zhang D, Wei H, You T, Lin HS, Kuang Z. Subtle Structural Differences Affect the Inhibitory Potency of RGD-Containing Cyclic Peptide Inhibitors Targeting SPSB Proteins. Int J Mol Sci 2024; 25:6764. [PMID: 38928469 PMCID: PMC11203437 DOI: 10.3390/ijms25126764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The SPRY domain-containing SOCS box proteins SPSB1, SPSB2, and SPSB4 utilize their SPRY/B30.2 domain to interact with a short region in the N-terminus of inducible nitric oxide synthase (iNOS), and recruit an E3 ubiquitin ligase complex to polyubiquitinate iNOS, resulting in the proteasomal degradation of iNOS. Inhibitors that can disrupt the endogenous SPSB-iNOS interactions could be used to augment cellular NO production, and may have antimicrobial and anticancer activities. We previously reported the rational design of a cyclic peptide inhibitor, cR8, cyclo(RGDINNNV), which bound to SPSB2 with moderate affinity. We, therefore, sought to develop SPSB inhibitors with higher affinity. Here, we show that cyclic peptides cR7, cyclo(RGDINNN), and cR9, cyclo(RGDINNNVE), have ~6.5-fold and ~2-fold, respectively, higher SPSB2-bindng affinities than cR8. We determined high-resolution crystal structures of the SPSB2-cR7 and SPSB2-cR9 complexes, which enabled a good understanding of the structure-activity relationships for these cyclic peptide inhibitors. Moreover, we show that these cyclic peptides displace full-length iNOS from SPSB2, SPSB1, and SPSB4, and that their inhibitory potencies correlate well with their SPSB2-binding affinities. The strongest inhibition was observed for cR7 against all three iNOS-binding SPSB proteins.
Collapse
Affiliation(s)
- Kefa Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yanhong Luo
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Weiwei Hu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Jinjin Yang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Danting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Huan Wei
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Tingting You
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Hai-Shu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhihe Kuang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
2
|
Mi T, Siriwibool S, Burgess K. Streamlined Protein-Protein Interface Loop Mimicry. Angew Chem Int Ed Engl 2023; 62:e202307092. [PMID: 37849440 DOI: 10.1002/anie.202307092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Cyclic peptides comprising endocyclic organic fragments, "cyclo-organopeptides", can be probes for perturbing protein-protein interactions (PPIs). Finding loop mimics is difficult because of high conformational variability amongst targets. Backbone Matching (BM), introduced here, helps solve this problem in the illustrative cases by facilitating efficient evaluation of virtual cyclo-organopeptide core-structure libraries. Thus, 86 rigid organic fragments were selected to build a library of 602 cyclo-organopeptides comprising Ala and organic parts: "cyclo-{-(Ala)n -organo-}". The central hypothesis is "hit" library members have accessible low energy conformers corresponding to backbone structures of target protein loops, while library members which cannot attain this conformation are probably unworthy of further evaluation. BM thereby prioritizes candidate loop mimics, so that less than 10 cyclo-organopeptides are needed to be prepared to find leads for two illustrative PPIs: iNOS ⋅ SPSB2, and uPA ⋅ uPAR.
Collapse
Affiliation(s)
- Tianxiong Mi
- Department of Chemistry, Texas A & M University, 77842, College Station, TX, USA
| | - Siriwalee Siriwibool
- School of Chemistry, Institute of Science, Suranaree University of Technology, 30000, Nakhon Ratchasima, Thailand
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, 77842, College Station, TX, USA
| |
Collapse
|
3
|
Rahman A, Matthews MA, Nowell CJ, Chalmers DK, Thompson PE, Nicholson SE, Barlow N, Norton RS. Enhanced nitric oxide production by macrophages treated with a cell-penetrating peptide conjugate. Bioorg Chem 2022; 123:105763. [DOI: 10.1016/j.bioorg.2022.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
|