1
|
Yan X, Lin Z, Shen H, Chen Y, Chen L. Photo-responsive antibacterial metal organic frameworks. J Mater Chem B 2025. [PMID: 40370037 DOI: 10.1039/d5tb00105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The misuse and overuse of antibiotics have caused the emergence of antibiotic-resistant bacteria, making bacterial infections more challenging. The increasing prevalence of multidrug-resistant pathogens has driven researchers to explore novel therapeutic strategies. Phototherapy strategies that utilize photo-responsive biomaterials for their antibacterial properties have gained widespread attention due to their capability of precisely controlling bacterial inactivation with minimal side effects. Despite their potential, photodynamic therapies suffer from phototoxicity and low efficiency of photosensitizers, while photothermal therapy risks overheating, which may harm healthy tissues, thus restricting its broader application. Metal organic frameworks (MOFs) have unique physicochemical properties, which provide a promising way to deal with these challenges. MOFs can function as reservoirs, loading and releasing antibacterial agents, such as antibiotics or metal ions, upon light illumination by virtue of their metastable coordination bonds. Their porous structures enable controlled drug release and encapsulation of photosensitizers. Furthermore, MOFs' tunable composition and pore structure allow for the light-triggered generation of heat and reactive oxygen species, enhancing their antibacterial effectiveness. By doping MOFs with functional materials, it is possible to achieve multi-mode antibacterial effects. In this review, we will outline recent advancements of photo-responsive antibacterial MOFs, categorize their underlying mechanisms of action and highlight their prospects in addressing bacterial resistance.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Zhengzheng Lin
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - He Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Liang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
2
|
Hibbert TM, Whiteley M, Renshaw SA, Neill DR, Fothergill JL. Emerging strategies to target virulence in Pseudomonas aeruginosa respiratory infections. Crit Rev Microbiol 2024; 50:1037-1052. [PMID: 37999716 DOI: 10.1080/1040841x.2023.2285995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is responsible for infections in people living with chronic respiratory conditions, such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Traditionally, in people with chronic respiratory disorders, P. aeruginosa infection has been managed with a combination of inhaled and intravenous antibiotic therapies. However, due in part to the prolonged use of antibiotics in these people, the emergence of multi-drug resistant P. aeruginosa strains is a growing concern. The development of anti-virulence therapeutics may provide a new means of treating P. aeruginosa lung infections whilst also combatting the AMR crisis, as these agents are presumed to exert reduced pressure for the emergence of drug resistance as compared to antibiotics. However, the pipeline for developing anti-virulence therapeutics is poorly defined, and it is currently unclear as to whether in vivo and in vitro models effectively replicate the complex pulmonary environment sufficiently to enable development and testing of such therapies for future clinical use. Here, we discuss potential targets for P. aeruginosa anti-virulence therapeutics and the effectiveness of the current models used to study them. Focus is given to the difficulty of replicating the virulence gene expression patterns of P. aeruginosa in the CF and NCFB lung under laboratory conditions and to the challenges this poses for anti-virulence therapeutic development.
Collapse
Affiliation(s)
- Tegan M Hibbert
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Centre for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen A Renshaw
- The Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Daniel R Neill
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Gao L, Zhang K, Wang Y, Qin C, Zhang Y, Liu Y, Liu C, Wan Y. Curcumin-mediated photodynamic disinfection strategy with specific spectral range for mucoid Pseudomonas Aeruginosa from hospital water. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113035. [PMID: 39303620 DOI: 10.1016/j.jphotobiol.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Hospital water systems represent critical environments for the transmission of pathogens, including multidrug-resistant strains like mucoid Pseudomonas aeruginosa (M-PA). Conventional disinfection methods often struggle to eradicate these pathogens effectively, highlighting the need for innovative approaches. OBJECTIVE This study aimed to develop an enhanced photodynamic disinfection strategy targeting M-PA from hospital water systems, using curcumin-mediated photodynamic inactivation (PDI) with specific spectral range. METHODS An M-PA strain isolated from hospital water was subjected to photodynamic treatment using curcumin as the photosensitizer. The efficacy of different wavelengths of light and varying concentrations of curcumin, with and without Tris-EDTA adjuvants, was evaluated through bacterial enumeration, ROS level measurements, transcriptome analysis, and assessment of virulence factors and biofilm formation. In vivo experiments utilizing a DSS-induced colitis mouse model assessed the protective effects of the photodynamic treatment against M-PA infection. RESULTS Our findings demonstrated that the combination of curcumin-mediated PDI with specific spectral range effectively reduced M-PA counts in water, particularly when supplemented with Tris-EDTA. Transcriptome analysis revealed significant downregulation of virulence-related genes under sublethal photodynamic conditions. Furthermore, photodynamic treatment inhibited pyocyanin production and biofilm formation in M-PA, highlighting its potential to disrupt pathogenicity mechanisms. In vivo experiments showed that PDI attenuated M-PA-induced colitis in mice, indicating its protective efficacy. CONCLUSION This study presents a promising photodynamic disinfection strategy for combating M-PA from hospital water. By optimizing curcumin-mediated PDI with specific spectral range and adjuvants, our approach demonstrates substantial efficacy in reducing bacterial counts, inhibiting virulence factors, and preventing M-PA-associated colitis.
Collapse
Affiliation(s)
- Lei Gao
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Kun Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yan Wang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yuejuan Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Ying Liu
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China.
| | - Yi Wan
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China.
| |
Collapse
|
4
|
Cao X, Gu L, Gao Z, Fan W, Zhang Q, Sheng J, Zhang Y, Sun Y. Pathogenicity and Genomic Characteristics Analysis of Pasteurella multocida Serotype A Isolated from Argali Hybrid Sheep. Microorganisms 2024; 12:1072. [PMID: 38930454 PMCID: PMC11205410 DOI: 10.3390/microorganisms12061072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory diseases arising from co-infections involving Pasteurella multocida (P. multocida) and Mycoplasma ovipneumoniae (Mo) pose a substantial threat to the sheep industry. This study focuses on the isolation and identification of the P. multocida strain extracted from the lung tissue of an argali hybrid sheep infected with Mo. Kunming mice were used as a model to assess the pathogenicity of P. multocida. Subsequently, whole genome sequencing (WGS) of P. multocida was conducted using the Illumina NovaSeq PE150 platform. The whole genome sequencing analysis involved the construction of an evolutionary tree to depict conserved genes and the generation of a genome circle diagram. P. multocida, identified as serotype A, was named P. multocida SHZ01. Our findings reveal that P. multocida SHZ01 infection induces pathological manifestations, including hemorrhage and edema, in mice. The phylogenetic tree of conserved genes analyzing P. multocida from different countries and different host sources indicates close relatedness between the P. multocida SHZ01 strain and the P. multocida 40540 strain (A:12), originating from turkeys in Denmark. The genome of P. multocida SHZ01 comprises 2,378,508 base pairs (bp) with a GC content of 40.89%. Notably, this strain, designated P. multocida, exhibits two distinct gene islands and harbors a total of 80 effector proteins associated with the Type III Secretion System (T3SS). The P. multocida SHZ01 strain harbors 82 virulence genes and 54 resistance genes. In the P. multocida SHZ01 strain, the proteins, genes, and related GO and KEGG pathways have been annotated. Exploring the relationship between these annotations and the pathogenicity of the P. multocida SHZ01 strain would be valuable. This study holds great significance in further understanding the pathogenesis and genetic characteristics of the sheep-derived P. multocida SHZ01 strain. Additionally, it contributes to our understanding of respiratory diseases in the context of co-infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (X.C.); (L.G.); (Z.G.); (W.F.); (Q.Z.); (J.S.)
| | - Yanming Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (X.C.); (L.G.); (Z.G.); (W.F.); (Q.Z.); (J.S.)
| |
Collapse
|
5
|
Hao DB, Li JL, Zhou XC, Li YY, Zhao ZX, Zhou R. Visible-Light-Driven NO Release from Postmodified MOFs via Photoinduced Electron Transfer for Antibacterial Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305943. [PMID: 37681501 DOI: 10.1002/smll.202305943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Photoresponsive nitric oxide (NO)-releasing materials (NORMs) enable the spatiotemporal delivery of NO to facilitate their potential applications in physiological conditions. Here two novel metal-organic frameworks (MOFs)-based photoactive NORMs achieved by the incorporation of prefunctionalized NO donors into the photosensitive Fe-MOFs via a postmodification strategy is reported. The modified Fe-MOFs display superior photoactivity of NO release when exposed to visible light (up to 720 nm). Significantly, the visible-light-driven NO release properties are further corroborated by their efficient antibacterial performance.
Collapse
Affiliation(s)
- De-Bo Hao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Jia-Li Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhen-Xin Zhao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
| | - Rui Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
6
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|