1
|
Wise TB, Heimer-McGinn VR, Dankert AM, Alessandro CR, Martin DE, Burwell RD, Templer VL. A matter of complexity? The role of the dorsal posterior parietal cortex in processing changes in spatial information across time. Behav Neurosci 2025; 139:91-104. [PMID: 39786822 PMCID: PMC12017265 DOI: 10.1037/bne0000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The posterior parietal cortex (PPC) is an associative neocortical region that integrates multiple streams of information and is implicated in spatial cognition and decision making. In some cases, however, the PPC is not required for these functions. One possibility is that the PPC is recruited when spatial complexity is high. Yet, few studies of PPC function have explicitly manipulated environmental complexity, complexity of spatial changes, or the temporal structure of spatial tasks. To examine whether task complexity recruits PPC function, we tested rats with neurotoxic damage to the dorsal PPC on a series of tasks varying in spatial and temporal complexity. Recognition memory was first assessed in standard exploration tasks, including object recognition, object location, and object in place, as well as a more complex object task in which spatial changes occurred across multiple delays. Spatial navigation was assessed in the circular hole board maze (Barnes maze), and temporal processing was assessed in a temporal order task. PPC damage spared performance on standard recognition memory tasks but caused deficits on tasks involving changes in object configuration or multiple changes across time. PPC damage spared acquisition on the Barnes maze but impaired retention and decreased efficiency of search strategies. PPC damage did not impact temporal order memory. Overall, these results suggest that the PPC is necessary when spatial complexity of the task increases attentional and long-term memory demands. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
- Taylor B Wise
- Department of Cognitive and Psychological Science, Brown University
| | | | - Anne M Dankert
- Department of Psychology and Program in Neuroscience, Providence College
| | | | - Dominique E Martin
- Department of Psychology and Program in Neuroscience, Providence College
| | | | - Victoria L Templer
- Department of Psychology and Program in Neuroscience, Providence College
| |
Collapse
|
2
|
Vericel ME, Baraduc P, Duhamel JR, Wirth S. Organizing space through saccades and fixations between primate posterior parietal cortex and hippocampus. Nat Commun 2024; 15:10448. [PMID: 39617769 PMCID: PMC11609276 DOI: 10.1038/s41467-024-54736-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 11/18/2024] [Indexed: 05/17/2025] Open
Abstract
The primate posterior parietal cortex (PPC) withholds a unified representation of the visual space supporting visual exploration, while the hippocampus (HPC) provides a memory-based cognitive place map of the environment. To probe the interactions between these two representations, i.e. between view and place, we compared neural activity in the two regions of macaques navigating a virtual maze. We show that a large proportion of PPC neurons displayed spatial selectivity, along with the HPC. We hypothesized that such modulation by self-position might stem from visual cues processing through saccades and fixations. Accordingly, we found saccade-modulated neurons and cells driven by direct fixations on maze paths or landmarks in both brain regions. These populations of "path" and "landmark cells" gave rise to task-relevant maze segmentation, specific to each region. Finally, both regions anticipated landmarks before they appeared in the field of view, suggesting a shared knowledge of the spatial layout. Altogether, these findings highlight the neural processes that make up place, combining visual exploration of objects in space with memory-driven actions.
Collapse
Affiliation(s)
- Marie E Vericel
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS & Université Claude Bernard Lyon 1, Bron, France.
| | - Pierre Baraduc
- GIPSA-lab, UMR 5216, CNRS, Grenoble-INP-UGA & Université Grenoble-Alpes, Saint Martin d'Hères, France
| | - Jean-René Duhamel
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS & Université Claude Bernard Lyon 1, Bron, France
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS & Université Claude Bernard Lyon 1, Bron, France.
| |
Collapse
|
3
|
Sotelo MI, Daneri MF, Bingman VP, Muzio RN. Amphibian spatial cognition, medial pallium and other supporting telencephalic structures. Neurosci Biobehav Rev 2024; 163:105739. [PMID: 38821152 DOI: 10.1016/j.neubiorev.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Vertebrate hippocampal formation is central to conversations on the comparative analysis of spatial cognition, especially in light of variation found in different vertebrate classes. Assuming the medial pallium (MP) of extant amphibians resembles the hippocampal formation (HF) of ancestral stem tetrapods, we propose that the HF of modern amniotes began with a MP characterized by a relatively undifferentiated cytoarchitecture, more direct thalamic/olfactory sensory inputs, and a more generalized role in associative learning-memory processes. As such, hippocampal evolution in amniotes, especially mammals, can be seen as progressing toward a cytoarchitecture with well-defined subdivisions, regional connectivity, and a functional specialization supporting map-like representations of space. We then summarize a growing literature on amphibian spatial cognition and its underlying brain organization. Emphasizing the MP/HF, we highlight that further research into amphibian spatial cognition would provide novel insight into the role of the HF in spatial memory processes, and their supporting neural mechanisms. A more complete reconstruction of hippocampal evolution would benefit from additional research on non-mammalian vertebrates, with amphibians being of particular interest.
Collapse
Affiliation(s)
- María Inés Sotelo
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Biología del Comportamiento, Argentina; Universidad de Buenos Aires (UBA), Facultad de Psicología, Instituto de Investigaciones, Argentina
| | - M Florencia Daneri
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Biología del Comportamiento, Argentina; Universidad de Buenos Aires (UBA), Facultad de Psicología, Instituto de Investigaciones, Argentina
| | - Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, USA
| | - Rubén N Muzio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Biología del Comportamiento, Argentina; Universidad de Buenos Aires (UBA), Facultad de Psicología, Instituto de Investigaciones, Argentina.
| |
Collapse
|
4
|
Tivadar RI, Franceschiello B, Minier A, Murray MM. Learning and navigating digitally rendered haptic spatial layouts. NPJ SCIENCE OF LEARNING 2023; 8:61. [PMID: 38102127 PMCID: PMC10724186 DOI: 10.1038/s41539-023-00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Learning spatial layouts and navigating through them rely not simply on sight but rather on multisensory processes, including touch. Digital haptics based on ultrasounds are effective for creating and manipulating mental images of individual objects in sighted and visually impaired participants. Here, we tested if this extends to scenes and navigation within them. Using only tactile stimuli conveyed via ultrasonic feedback on a digital touchscreen (i.e., a digital interactive map), 25 sighted, blindfolded participants first learned the basic layout of an apartment based on digital haptics only and then one of two trajectories through it. While still blindfolded, participants successfully reconstructed the haptically learned 2D spaces and navigated these spaces. Digital haptics were thus an effective means to learn and translate, on the one hand, 2D images into 3D reconstructions of layouts and, on the other hand, navigate actions within real spaces. Digital haptics based on ultrasounds represent an alternative learning tool for complex scenes as well as for successful navigation in previously unfamiliar layouts, which can likely be further applied in the rehabilitation of spatial functions and mitigation of visual impairments.
Collapse
Affiliation(s)
- Ruxandra I Tivadar
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland.
- Centre for Integrative and Complementary Medicine, Department of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Cognitive Computational Neuroscience Group, Institute for Computer Science, University of Bern, Bern, Switzerland.
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland.
| | - Benedetta Franceschiello
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
- Institute of Systems Engineering, School of Engineering, University of Applied Sciences Western Switzerland (HES-SO Valais), Sion, Switzerland
| | - Astrid Minier
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Micah M Murray
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland.
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland.
| |
Collapse
|
5
|
Wang Q, Stepniewska I, Kaas JH. Thalamic connections of the caudal part of the posterior parietal cortex differ from the rostral part in galagos (Otolemur garnettii). J Comp Neurol 2023; 531:1752-1771. [PMID: 37702312 PMCID: PMC10959078 DOI: 10.1002/cne.25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
In this study, thalamic connections of the caudal part of the posterior parietal cortex (PPCc) are described and compared to connections of the rostral part of PPC (PPCr) in strepsirrhine galagos. PPC of galagos is divided into two parts, PPCr and PPCc, based on the responsiveness to electrical stimulation. Stimulation of PPC with long trains of electrical pulses evokes different types of ethologically relevant movements from different subregions ("domains") of PPCr, while it fails to evoke any movements from PPCc. Anatomical tracers were placed in both dorsal and ventral divisions of PPCc to reveal thalamic origins and targets of PPCc connections. We found major thalamic connections of PPCc with the lateral posterior and lateral pulvinar nuclei, distinct from those of PPCr that were mainly with the ventral lateral, anterior pulvinar, and posterior nuclei. The anterior, medial, and inferior pulvinar, ventral anterior, ventral lateral, and intralaminar nuclei had fewer connections with PPCc. Dominant connections of PPCc with lateral posterior and lateral pulvinar nuclei provide evidence that unlike the sensorimotor-orientated PPCr, PPCc is more involved in visual-related functions.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Medina AE, Foxworthy WA, Keum D, Meredith MA. Development of multisensory processing in ferret parietal cortex. Eur J Neurosci 2023; 58:3226-3238. [PMID: 37452674 PMCID: PMC10503439 DOI: 10.1111/ejn.16094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
It is well known that the nervous system adjusts itself to its environment during development. Although a great deal of effort has been directed towards understanding the developmental processes of the individual sensory systems (e.g., vision, hearing, etc.), only one major study has examined the maturation of multisensory processing in cortical neurons. Therefore, the present investigation sought to evaluate multisensory development in a different cortical region and species. Using multiple single-unit recordings in anaesthetised ferrets (n = 18) of different ages (from postnatal day 80 to 300), we studied the responses of neurons from the rostral posterior parietal (PPr) area to presentations of visual, tactile and combined visual-tactile stimulation. The results showed that multisensory neurons were infrequent at the youngest ages (pre-pubertal) and progressively increased through the later ages. Significant response changes that result from multisensory stimulation (defined as multisensory integration [MSI]) were observed in post-pubertal adolescent animals, and the magnitude of these integrated responses also increased across this age group. Furthermore, non-significant multisensory response changes were progressively increased in adolescent animals. Collectively, at the population level, MSI was observed to shift from primarily suppressive levels in infants to increasingly higher levels in later stages. These data indicate that, like the unisensory systems from which it is derived, multisensory processing shows developmental changes whose specific time course may be regionally and species-dependent.
Collapse
Affiliation(s)
- Alexandre E. Medina
- Department of Pediatrics, University of Maryland, School of Medicine, Baltimore, MD
| | - W. Alex Foxworthy
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA
- Department of Biology, Eastern Shore Community College, Melfa, VA
| | - Dongil Keum
- Department of Pediatrics, University of Maryland, School of Medicine, Baltimore, MD
| | - M. Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
7
|
Sleep deprivation and hippocampal ripple disruption after one-session learning eliminate memory expression the next day. Proc Natl Acad Sci U S A 2022; 119:e2123424119. [PMID: 36279444 PMCID: PMC9636927 DOI: 10.1073/pnas.2123424119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hippocampal ripples are proposed to be the key element in sleep to enable memory consolidation. Here we show that ripple disruption as well sleep deprivation after one-session learning eliminate long-term memory expression and therefore are necessary for successful consolidation. Memory reactivation during non–rapid-eye-movement ripples is thought to communicate new information to a systems-wide network and thus can be a key player mediating the positive effect of sleep on memory consolidation. Causal experiments disrupting ripples have only been performed in multiday training paradigms, which decrease but do not eliminate memory performance, and no comparison with sleep deprivation has been made. To enable such investigations, we developed a one-session learning paradigm in a Plusmaze and show that disruption of either sleep with gentle handling or hippocampal ripples with electrical stimulation impaired long-term memory. Furthermore, we detected hippocampal ripples and parietal high-frequency oscillations after different behaviors, and a bimodal frequency distribution in the cortical events was observed. Faster cortical high-frequency oscillations increased after normal learning, a change not seen in the hippocampal ripple-disruption condition, consistent with these having a role in memory consolidation.
Collapse
|
8
|
Richmond LL, Brackins T, Rajaram S. Episodic Memory Performance Modifies the Strength of the Age-Brain Structure Relationship. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074364. [PMID: 35410041 PMCID: PMC8998694 DOI: 10.3390/ijerph19074364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
The bivariate relationships between brain structure, age, and episodic memory performance are well understood. Advancing age and poorer episodic memory performance are each associated with smaller brain volumes and lower cortical thickness measures, respectively. Advancing age is also known to be associated with poorer episodic memory task scores on average. However, the simultaneous interrelationship between all three factors—brain structure, age, and episodic memory—is not as well understood. We tested the hypothesis that the preservation of episodic memory function would modify the typical trajectory of age-related brain volume loss in regions known to support episodic memory function using linear mixed models in a large adult lifespan sample. We found that the model allowing for age and episodic memory scores to interact predicted the hippocampal volume better than simpler models. Furthermore, we found that a model including a fixed effect for age and episodic memory scores (but without the inclusion of the interaction term) predicted the cortical volumes marginally better than a simpler model in the prefrontal regions and significantly better in the posterior parietal regions. Finally, we observed that a model containing only a fixed effect for age (e.g., without the inclusion of memory scores) predicted the cortical thickness estimates and regional volume in a non-memory control region. Together, our findings provide support for the idea that the preservation of memory function in late life can buffer against typical patterns of age-related brain volume loss in regions known to support episodic memory.
Collapse
|
9
|
Samanta A, van Rongen LS, Rossato JI, Jacobse J, Schoenfeld R, Genzel L. Sleep Leads to Brain-Wide Neural Changes Independent of Allocentric and Egocentric Spatial Training in Humans and Rats. Cereb Cortex 2021; 31:4970-4985. [PMID: 34037203 PMCID: PMC8491695 DOI: 10.1093/cercor/bhab135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
Sleep is important for memory consolidation and systems consolidation in particular, which is thought to occur during sleep. While there has been a significant amount of research regarding the effect of sleep on behavior and certain mechanisms during sleep, evidence that sleep leads to consolidation across the system has been lacking until now. We investigated the role of sleep in the consolidation of spatial memory in both rats and humans using a watermaze task involving allocentric- and egocentric-based training. Analysis of immediate early gene expression in rodents, combined with functional magnetic resonance imaging in humans, elucidated similar behavioral and neural effects in both species. Sleep had a beneficial effect on behavior in rats and a marginally significant effect in humans. Interestingly, sleep led to changes across multiple brain regions at the time of retrieval in both species and in both training conditions. In rats, sleep led to increased gene expression in the hippocampus, striatum, and prefrontal cortex. In the humans, sleep led to an activity increase in brain regions belonging to the executive control network and a decrease in activity in regions belonging to the default mode network. Thus, we provide cross-species evidence for system-level memory consolidation occurring during sleep.
Collapse
Affiliation(s)
- Anumita Samanta
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Laurens S van Rongen
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Janine I Rossato
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Justin Jacobse
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Robby Schoenfeld
- Institute of Psychology, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Lisa Genzel
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.,Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Sato Y, Mizuno H, Matsumoto N, Ikegaya Y. Subthreshold membrane potential dynamics of posterior parietal cortical neurons coupled with hippocampal ripples. Physiol Int 2021. [PMID: 33769956 DOI: 10.1556/2060.2021.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
During behavioral states of immobility, sleep, and anesthesia, the hippocampus generates high-frequency oscillations called ripples. Ripples occur simultaneously with synchronous neuronal activity in the neocortex, known as slow waves, and contribute to memory consolidation. During these ripples, various neocortical regions exhibit modulations in spike rates and local field activity irrespective of whether they receive direct synaptic inputs from the hippocampus. However, little is known about the subthreshold dynamics of the membrane potentials of neocortical neurons during ripples. We patch-clamped layer 2/3 pyramidal cells in the posterior parietal cortex (PPC), a neocortical region that is involved in allocentric spatial representation of behavioral exploration and sequential series of relevant action potentials during ripples. We simultaneously monitored the membrane potentials of post hoc-identified PPC neurons and the local field potentials of the hippocampus in anesthetized mice. More than 50% of the recorded PPC neurons exhibited significant depolarizations and/or hyperpolarizations during ripples. Histological inspections of the recorded neurons revealed that the ripple-modulated PPC neurons were distributed in the PPC in a spatially non-biased fashion. These results suggest that hippocampal ripples are widely but selectively associated with the subthreshold dynamics of the membrane potentials of PPC neurons even though there is no monosynaptic connectivity between the hippocampus and the PPC.
Collapse
Affiliation(s)
- Y Sato
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - H Mizuno
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - N Matsumoto
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Y Ikegaya
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- 2Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- 3Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Lee SM, Jin SW, Park SB, Park EH, Lee CH, Lee HW, Lim HY, Yoo SW, Ahn JR, Shin J, Lee SA, Lee I. Goal-directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus 2021; 31:717-736. [PMID: 33394547 PMCID: PMC8359334 DOI: 10.1002/hipo.23295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 11/10/2022]
Abstract
The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The “dual‐stream model” was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual‐stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal‐directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal‐directed Interaction of Stimulus and Task‐demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices—the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects—with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non‐navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non‐navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Jin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seong-Beom Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Hye Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Choong-Hee Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Jae Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Berens SC, Joensen BH, Horner AJ. Tracking the Emergence of Location-based Spatial Representations in Human Scene-Selective Cortex. J Cogn Neurosci 2020; 33:445-462. [PMID: 33284080 PMCID: PMC8658499 DOI: 10.1162/jocn_a_01654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Scene-selective regions of the human brain form allocentric representations of locations in our environment. These representations are independent of heading direction and allow us to know where we are regardless of our direction of travel. However, we know little about how these location-based representations are formed. Using fMRI representational similarity analysis and linear mixed models, we tracked the emergence of location-based representations in scene-selective brain regions. We estimated patterns of activity for two distinct scenes, taken before and after participants learnt they were from the same location. During a learning phase, we presented participants with two types of panoramic videos: (1) an overlap video condition displaying two distinct scenes (0° and 180°) from the same location and (2) a no-overlap video displaying two distinct scenes from different locations (which served as a control condition). In the parahippocampal cortex
(PHC) and retrosplenial cortex (RSC), representations of scenes from the same location became more similar to each other only after they had been shown in the overlap condition, suggesting the emergence of viewpoint-independent location-based representations. Whereas these representations emerged in the PHC regardless of task performance, RSC representations only emerged for locations where participants could behaviorally identify the two scenes as belonging to the same location. The results suggest that we can track the emergence of location-based representations in the PHC and RSC in a single fMRI experiment. Further, they support computational models that propose the RSC plays a key role in transforming viewpoint-independent representations into behaviorally relevant representations of specific viewpoints.
Collapse
Affiliation(s)
| | - Bárður H Joensen
- University of York.,UCL Institute of Cognitive Neuroscience.,UCL Institute of Neurology
| | | |
Collapse
|
13
|
Rule ME, Loback AR, Raman DV, Driscoll LN, Harvey CD, O'Leary T. Stable task information from an unstable neural population. eLife 2020; 9:51121. [PMID: 32660692 PMCID: PMC7392606 DOI: 10.7554/elife.51121] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Over days and weeks, neural activity representing an animal's position and movement in sensorimotor cortex has been found to continually reconfigure or 'drift' during repeated trials of learned tasks, with no obvious change in behavior. This challenges classical theories, which assume stable engrams underlie stable behavior. However, it is not known whether this drift occurs systematically, allowing downstream circuits to extract consistent information. Analyzing long-term calcium imaging recordings from posterior parietal cortex in mice (Mus musculus), we show that drift is systematically constrained far above chance, facilitating a linear weighted readout of behavioral variables. However, a significant component of drift continually degrades a fixed readout, implying that drift is not confined to a null coding space. We calculate the amount of plasticity required to compensate drift independently of any learning rule, and find that this is within physiologically achievable bounds. We demonstrate that a simple, biologically plausible local learning rule can achieve these bounds, accurately decoding behavior over many days.
Collapse
Affiliation(s)
- Michael E Rule
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Adrianna R Loback
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Dhruva V Raman
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Laura N Driscoll
- Department of Electrical Engineering, Stanford University, Stanford, United States
| | | | - Timothy O'Leary
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Chowdhry N, Dholakia UM. Know thyself financially: How financial self‐awareness can benefit consumers and financial advisors. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/cfp2.1069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Li H, Liu N, Li Y, Weidner R, Fink GR, Chen Q. The Simon Effect Based on Allocentric and Egocentric Reference Frame: Common and Specific Neural Correlates. Sci Rep 2019; 9:13727. [PMID: 31551429 PMCID: PMC6760495 DOI: 10.1038/s41598-019-49990-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 09/04/2019] [Indexed: 11/09/2022] Open
Abstract
An object's location can be represented either relative to an observer's body effectors (egocentric reference frame) or relative to another external object (allocentric reference frame). In non-spatial tasks, an object's task-irrelevant egocentric position conflicts with the side of a task-relevant manual response, which defines the classical Simon effect. Growing evidence suggests that the Simon effect occurs not only based on conflicting positions within the egocentric but also within the allocentric reference frame. Although neural mechanisms underlying the egocentric Simon effect have been extensively researched, neural mechanisms underlying the allocentric Simon effect and their potential interaction with those underlying its egocentric variant remain to be explored. In this fMRI study, spatial congruency between the task-irrelevant egocentric and allocentric target positions and the task-relevant response hand was orthogonally manipulated. Behaviorally, a significant Simon effect was observed for both reference frames. Neurally, three sub-regions in the frontoparietal network were involved in different aspects of the Simon effect, depending on the source of the task-irrelevant object locations. The right precentral gyrus, extending to the right SMA, was generally activated by Simon conflicts, irrespective of the spatial reference frame involved, and showed no additive activity to Simon conflicts. In contrast, the right postcentral gyrus was specifically involved in Simon conflicts induced by task-irrelevant allocentric, rather than egocentric, representations. Furthermore, a right lateral frontoparietal network showed increased neural activity whenever the egocentric and allocentric target locations were incongruent, indicating its functional role as a mismatch detector that monitors the discrepancy concerning allocentric and egocentric object locations.
Collapse
Affiliation(s)
- Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Nan Liu
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - You Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
- Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, P.R. China.
| |
Collapse
|
16
|
Dillingham CM, Vann SD. Why Isn't the Head Direction System Necessary for Direction? Lessons From the Lateral Mammillary Nuclei. Front Neural Circuits 2019; 13:60. [PMID: 31619970 PMCID: PMC6759954 DOI: 10.3389/fncir.2019.00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/26/2019] [Indexed: 11/24/2022] Open
Abstract
Complex spatial representations in the hippocampal formation and related cortical areas require input from the head direction system. However, a recurrent finding is that behavior apparently supported by these spatial representations does not appear to require input from generative head direction regions, i.e., lateral mammillary nuclei (LMN). Spatial tasks that tax direction discrimination should be particularly sensitive to the loss of head direction information, however, this has been repeatedly shown not to be the case. A further dissociation between electrophysiological properties of the head direction system and behavior comes in the form of geometric-based navigation which is impaired following lesions to the head direction system, yet head direction cells are not normally guided by geometric cues. We explore this apparent mismatch between behavioral and electrophysiological studies and highlight future experiments that are needed to generate models that encompass both neurophysiological and behavioral findings.
Collapse
Affiliation(s)
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
|
18
|
Clark BJ, Simmons CM, Berkowitz LE, Wilber AA. The retrosplenial-parietal network and reference frame coordination for spatial navigation. Behav Neurosci 2018; 132:416-429. [PMID: 30091619 PMCID: PMC6188841 DOI: 10.1037/bne0000260] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The retrosplenial cortex is anatomically positioned to integrate sensory, motor, and visual information and is thought to have an important role in processing spatial information and guiding behavior through complex environments. Anatomical and theoretical work has argued that the retrosplenial cortex participates in spatial behavior in concert with input from the parietal cortex. Although the nature of these interactions is unknown, a central position is that the functional connectivity is hierarchical with egocentric spatial information processed in the parietal cortex and higher-level allocentric mappings generated in the retrosplenial cortex. Here, we review the evidence supporting this proposal. We begin by summarizing the key anatomical features of the retrosplenial-parietal network, and then review studies investigating the neural correlates of these regions during spatial behavior. Our summary of this literature suggests that the retrosplenial-parietal circuitry does not represent a strict hierarchical parcellation of function between the two regions but instead a heterogeneous mixture of egocentric-allocentric coding and integration across frames of reference. We also suggest that this circuitry should be represented as a gradient of egocentric-to-allocentric information processing from parietal to retrosplenial cortices, with more specialized encoding of global allocentric frameworks within the retrosplenial cortex and more specialized egocentric and local allocentric representations in parietal cortex. We conclude by identifying the major gaps in this literature and suggest new avenues of research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
19
|
Peters S, Brown KE, Garland SJ, Staines WR, Handy TC, Boyd LA. Suppression of somatosensory stimuli during motor planning may explain levels of balance and mobility after stroke. Eur J Neurosci 2018; 48:3534-3551. [PMID: 30151944 DOI: 10.1111/ejn.14136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 12/01/2022]
Abstract
The ability to actively suppress, or gate, irrelevant sensory information is required for safe and efficient walking in sensory-rich environments. Both motor attention and motor planning alter somatosensory evoked potentials (SEPs) in healthy adults. This study's aim was to examine the effect of motor attention on processing of irrelevant somatosensory information during plantar flexion motor planning after stroke. Thirteen healthy older adults and 11 individuals with stroke participated. Irrelevant tibial nerve stimulation was delivered while SEPs were recorded over Cz, overlaying the leg portion of the sensorimotor cortex at the vertex of the head. Three conditions were tested in both legs: (1) Rest, (2) Attend To, and (3) Attend Away from the stimulated limb. In conditions 2 and 3, relevant vibration cued voluntary plantar flexion movements of the stimulated (Attend To) or non-stimulated (Attend Away) leg. SEP amplitudes were averaged during motor planning per condition. Individuals with stroke did not show attention-mediated gating of the N40 component associated with irrelevant somatosensory information during motor planning. It may be that dysfunction in pathways connecting to area 3b explains the lack of attention-mediated gating of the N40. Also, attention-mediated gating during motor planning explained significant and unique variance in a measure of community balance and mobility combined with response time. Thus, the ability to gate irrelevant somatosensory information appears important for stepping in both older adults and after stroke. Our data suggest that therapies that direct motor attention could positively impact walking after stroke.
Collapse
Affiliation(s)
- Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katlyn E Brown
- Graduate Programs in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - S Jayne Garland
- Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - W Richard Staines
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Todd C Handy
- Department of Psychology, Faculty of Arts, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Weiss S, Derdikman D. Role of the head-direction signal in spatial tasks: when and how does it guide behavior? J Neurophysiol 2018. [PMID: 29537921 DOI: 10.1152/jn.00560.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, mammalian head-direction (HD) cells have been extensively researched in terms of sensory origins, external cue control, and circuitry. However, the relationship of HD cells to behavior is not yet fully understood. In the current review, we examine the anatomical clues for information flow in the HD circuit and an emerging body of evidence that links neural activity of HD cells and spatial orientation. We hypothesize from results obtained in spatial orientation tasks involving HD cells that when properly aligned with available external cues, the HD signal could be used for guiding rats to a goal location. However, contradictory inputs from separate sensory systems may reduce the influence of the HD signal such that animals are able to switch between this and other systems according to their impact on behavior.
Collapse
Affiliation(s)
- Shahaf Weiss
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology , Haifa , Israel.,School of Zoology, George Wise Faculty of Life Sciences, Tel Aviv University , Ramat-Aviv , Israel.,Max Planck Institute for Brain Research , Frankfurt am Main , Germany
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology , Haifa , Israel
| |
Collapse
|
21
|
Pizzamiglio S, Abdalla H, Naeem U, Turner DL. Neural predictors of gait stability when walking freely in the real-world. J Neuroeng Rehabil 2018; 15:11. [PMID: 29486775 PMCID: PMC5830090 DOI: 10.1186/s12984-018-0357-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gait impairments during real-world locomotion are common in neurological diseases. However, very little is currently known about the neural correlates of walking in the real world and on which regions of the brain are involved in regulating gait stability and performance. As a first step to understanding how neural control of gait may be impaired in neurological conditions such as Parkinson's disease, we investigated how regional brain activation might predict walking performance in the urban environment and whilst engaging with secondary tasks in healthy subjects. METHODS We recorded gait characteristics including trunk acceleration and brain activation in 14 healthy young subjects whilst they walked around the university campus freely (single task), while conversing with the experimenter and while texting with their smartphone. Neural spectral power density (PSD) was evaluated in three brain regions of interest, namely the pre-frontal cortex (PFC) and bilateral posterior parietal cortex (right/left PPC). We hypothesized that specific regional neural activation would predict trunk acceleration data obtained during the different walking conditions. RESULTS Vertical trunk acceleration was predicted by gait velocity and left PPC theta (4-7 Hz) band PSD in single-task walking (R-squared = 0.725, p = 0.001) and by gait velocity and left PPC alpha (8-12 Hz) band PSD in walking while conversing (R-squared = 0.727, p = 0.001). Medio-lateral trunk acceleration was predicted by left PPC beta (15-25 Hz) band PSD when walking while texting (R-squared = 0.434, p = 0.010). CONCLUSIONS We suggest that the left PPC may be involved in the processes of sensorimotor integration and gait control during walking in real-world conditions. Frequency-specific coding was operative in different dual tasks and may be developed as biomarkers of gait deficits in neurological conditions during performance of these types of, now commonly undertaken, dual tasks.
Collapse
Affiliation(s)
- Sara Pizzamiglio
- Neuroplasticity and Neurorehabilitation Doctoral Training Programme, Neurorehabilitation Unit, School of Health, Sport and Bioscience, College of Applied Health, University of East London, E15 4LZ, London, UK. .,School of Architecture, Computing and Engineering, University of East London, University Way, London, UK.
| | - Hassan Abdalla
- School of Architecture, Computing and Engineering, University of East London, University Way, London, UK
| | - Usman Naeem
- School of Architecture, Computing and Engineering, University of East London, University Way, London, UK
| | - Duncan L Turner
- Neuroplasticity and Neurorehabilitation Doctoral Training Programme, Neurorehabilitation Unit, School of Health, Sport and Bioscience, College of Applied Health, University of East London, E15 4LZ, London, UK.,UCLP Centre for Neurorehabilitation, London, UK
| |
Collapse
|
22
|
Khodagholy D, Gelinas JN, Buzsáki G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 2018; 358:369-372. [PMID: 29051381 DOI: 10.1126/science.aan6203] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/06/2017] [Indexed: 01/04/2023]
Abstract
Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces.
Collapse
Affiliation(s)
- Dion Khodagholy
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA.,Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Jennifer N Gelinas
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA.,Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA.,Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
23
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|
24
|
Huang W, Chen C, Liu X. Hindlimb suspension-induced cell apoptosis in the posterior parietal cortex and lateral geniculate nucleus: corresponding changes in c-Fos protein and the PI3K/Akt signaling pathway. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Marigold DS, Drew T. Posterior parietal cortex estimates the relationship between object and body location during locomotion. eLife 2017; 6. [PMID: 29053442 PMCID: PMC5650472 DOI: 10.7554/elife.28143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/14/2017] [Indexed: 12/04/2022] Open
Abstract
We test the hypothesis that the posterior parietal cortex (PPC) contributes to the control of visually guided locomotor gait modifications by constructing an estimation of object location relative to body state, and in particular the changing gap between them. To test this hypothesis, we recorded neuronal activity from areas 5b and 7 of the PPC of cats walking on a treadmill and stepping over a moving obstacle whose speed of advance was varied (slowed or accelerated with respect to the speed of the cat). We found distinct populations of neurons in the PPC, primarily in area 5b, that signaled distance- or time-to-contact with the obstacle, regardless of which limb was the first to step over the obstacle. We propose that these cells are involved in a sensorimotor transformation whereby information on the location of an obstacle with respect to the body is used to initiate the gait modification. Imagine crossing the street and having to step up onto a sidewalk, or running up to kick a moving soccer ball. How does the brain allow you to accomplish these deceptively simple tasks? You might say that you look at the target and then adjust where you place your feet in order to achieve your goal. That would be correct, but to make that adjustment you have to determine where you are with respect to the curb or the soccer ball. A key aspect of both of these activities is the ability to determine where your target is with respect to your current location, even if that target is moving. One way to do that is to determine the distance or the time required to reach that target. The brain can then use this information to adjust your foot placement and limb movement to fulfill your goal. Despite the fact that we constantly use vision to examine our environment as we walk, we have little understanding as to how the brain uses vision to plan where to step next. Marigold and Drew have now determined whether one specific part of the brain called the posterior parietal cortex, which is known to be involved in integrating vision and movement, is involved in this planning. Specifically, can it estimate the relative location of a moving object with respect to the body? Marigold and Drew recorded from neurons in the posterior parietal cortex of cats while they walked on a treadmill and stepped over an obstacle that moved towards them. On some tests, the obstacle was either slowed or accelerated quickly as it approached the cat. Regardless of these manipulations, some neurons always became active when the obstacle was at a specific distance from the cat. By contrast, other neurons always became active at a specific time before the cat met the obstacle. Animals use this information to adjust their gait to step over an obstacle without hitting it. Overall, the results presented by Marigold and Drew provide new insights into how animals use vision to modify their stepping pattern. This information could potentially be used to devise rehabilitation techniques, perhaps using virtual reality, to aid patients with damage to the posterior parietal cortex. Equally, the results from this research could help to design brain-controlled devices that help patients to walk – or even intelligent walking robots.
Collapse
Affiliation(s)
- Daniel S Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Trevor Drew
- Département de Neurosciences, Université de Montréal, Québec, Canada.,Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec, Canada
| |
Collapse
|
26
|
Mohan H, de Haan R, Mansvelder HD, de Kock CPJ. The posterior parietal cortex as integrative hub for whisker sensorimotor information. Neuroscience 2017. [PMID: 28642168 DOI: 10.1016/j.neuroscience.2017.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our daily life consists of a continuous interplay between incoming sensory information and outgoing motor plans. Particularly during goal-directed behavior and active exploration of the sensory environment, brain circuits are merging sensory and motor signals. This is referred to as sensorimotor integration and is relevant for locomotion, vision or tactile exploration. The somatosensory (tactile) system is an attractive modality to study sensorimotor integration in health and disease, motivated by the need for revolutionary technology that builds upon conceptual understanding of sensorimotor integration, such as brain-machine-interfaces and neuro-prosthetics. In this perspective, we focus on the rat whisker system and put forward the posterior parietal cortex as a potential circuit where sensorimotor integration could occur during active somatosensation.
Collapse
Affiliation(s)
- Hemanth Mohan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Roel de Haan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
27
|
Oess T, Krichmar JL, Röhrbein F. A Computational Model for Spatial Navigation Based on Reference Frames in the Hippocampus, Retrosplenial Cortex, and Posterior Parietal Cortex. Front Neurorobot 2017; 11:4. [PMID: 28223931 PMCID: PMC5293834 DOI: 10.3389/fnbot.2017.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/12/2017] [Indexed: 02/02/2023] Open
Abstract
Behavioral studies for humans, monkeys, and rats have shown that, while traversing an environment, these mammals tend to use different frames of reference and frequently switch between them. These frames represent allocentric, egocentric, or route-centric views of the environment. However, combinations of either of them are often deployed. Neurophysiological studies on rats have indicated that the hippocampus, the retrosplenial cortex, and the posterior parietal cortex contribute to the formation of these frames and mediate the transformation between those. In this paper, we construct a computational model of the posterior parietal cortex and the retrosplenial cortex for spatial navigation. We demonstrate how the transformation of reference frames could be realized in the brain and suggest how different brain areas might use these reference frames to form navigational strategies and predict under what conditions an animal might use a specific type of reference frame. Our simulated navigation experiments demonstrate that the model’s results closely resemble behavioral findings in humans and rats. These results suggest that navigation strategies may depend on the animal’s reliance in a particular reference frame and shows how low confidence in a reference frame can lead to fluid adaptation and deployment of alternative navigation strategies. Because of its flexibility, our biologically inspired navigation system may be applied to autonomous robots.
Collapse
Affiliation(s)
- Timo Oess
- Department of Informatics, Technical University of Munich , Garching , Germany
| | - Jeffrey L Krichmar
- Cognitive Anteater Robotics Laboratory, Department of Cognitive Sciences, University of California Irvine , Irvine, CA , USA
| | - Florian Röhrbein
- Department of Informatics, Technical University of Munich , Garching , Germany
| |
Collapse
|
28
|
Indovina I, Maffei V, Mazzarella E, Sulpizio V, Galati G, Lacquaniti F. Path integration in 3D from visual motion cues: A human fMRI study. Neuroimage 2016; 142:512-521. [DOI: 10.1016/j.neuroimage.2016.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/23/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
|
29
|
Klingner CM, Axer H, Brodoehl S, Witte OW. Vertigo and the processing of vestibular information: A review in the context of predictive coding. Neurosci Biobehav Rev 2016; 71:379-387. [PMID: 27639447 DOI: 10.1016/j.neubiorev.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/01/2022]
Abstract
This article investigates the processing of vestibular information by interpreting current experimental knowledge in the framework of predictive coding. We demonstrate that this theoretical framework give us insights into several important questions regarding specific properties of the vestibular system. Particularly, we discuss why the vestibular network is more spatially distributed than other sensory networks, why a mismatch in the vestibular system is more clinically disturbing than in other sensory systems, why the vestibular system is only marginally affected by most cerebral lesions, and whether there is a primary vestibular cortex. The use of predictive coding as a theoretical framework further points to some problems with the current interpretation of results that are gained from vestibular stimulation studies. In particular, we argue that cortical responses of vestibular stimuli cannot be interpreted in the same way as responses of other sensory modalities. Finally, we discuss the implications of the new insights, hypotheses and problems that were identified in this review on further directions of research of vestibular information processing.
Collapse
Affiliation(s)
- Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital - Friedrich Schiller University Jena, Germany; Biomagnetic Center, Jena University Hospital - Friedrich Schiller University Jena, Germany.
| | - Hubertus Axer
- Hans Berger Department of Neurology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital - Friedrich Schiller University Jena, Germany; Biomagnetic Center, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| |
Collapse
|
30
|
From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behav Brain Sci 2016; 40:e164. [PMID: 27530053 DOI: 10.1017/s0140525x16000960] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIn this review, we are pitting two theories against each other: the more accepted theory, the number sense theory, suggesting that a sense of number is innate and non-symbolic numerosity is being processed independently of continuous magnitudes (e.g., size, area, and density); and the newly emerging theory suggesting that (1) both numerosities and continuous magnitudes are processed holistically when comparing numerosities and (2) a sense of number might not be innate. In the first part of this review, we discuss the number sense theory. Against this background, we demonstrate how the natural correlation between numerosities and continuous magnitudes makes it nearly impossible to study non-symbolic numerosity processing in isolation from continuous magnitudes, and therefore, the results of behavioral and imaging studies with infants, adults, and animals can be explained, at least in part, by relying on continuous magnitudes. In the second part, we explain the sense of magnitude theory and review studies that directly demonstrate that continuous magnitudes are more automatic and basic than numerosities. Finally, we present outstanding questions. Our conclusion is that there is not enough convincing evidence to support the number sense theory anymore. Therefore, we encourage researchers not to assume that number sense is simply innate, but to put this hypothesis to the test and consider whether such an assumption is even testable in the light of the correlation of numerosity and continuous magnitudes.
Collapse
|
31
|
Rajan K, Harvey CD, Tank DW. Recurrent Network Models of Sequence Generation and Memory. Neuron 2016; 90:128-42. [PMID: 26971945 DOI: 10.1016/j.neuron.2016.02.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/03/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
Abstract
Sequential activation of neurons is a common feature of network activity during a variety of behaviors, including working memory and decision making. Previous network models for sequences and memory emphasized specialized architectures in which a principled mechanism is pre-wired into their connectivity. Here we demonstrate that, starting from random connectivity and modifying a small fraction of connections, a largely disordered recurrent network can produce sequences and implement working memory efficiently. We use this process, called Partial In-Network Training (PINning), to model and match cellular resolution imaging data from the posterior parietal cortex during a virtual memory-guided two-alternative forced-choice task. Analysis of the connectivity reveals that sequences propagate by the cooperation between recurrent synaptic interactions and external inputs, rather than through feedforward or asymmetric connections. Together our results suggest that neural sequences may emerge through learning from largely unstructured network architectures.
Collapse
Affiliation(s)
- Kanaka Rajan
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | | | - David W Tank
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
32
|
Brandt T, Huber M, Schramm H, Kugler G, Dieterich M, Glasauer S. "Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings. PLoS One 2015; 10:e0141257. [PMID: 26509927 PMCID: PMC4624999 DOI: 10.1371/journal.pone.0141257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/06/2015] [Indexed: 01/26/2023] Open
Abstract
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings.
Collapse
Affiliation(s)
- Thomas Brandt
- Clinical Neuroscience, Ludwig-Maximilians-University Munich, Germany
- German Center for Vertigo and Balance Disorders—IFBLMU (DSGZ), Ludwig-Maximilians-University Munich, Germany
- Bernstein Center for Computational Neuroscience; Ludwig-Maximilians-University Munich, Germany
- Hertie Foundation, Frankfurt a.M., Germany
- * E-mail:
| | - Markus Huber
- Clinical Neuroscience, Ludwig-Maximilians-University Munich, Germany
- Center for Sensorimotor Research; Ludwig-Maximilians-University Munich, Germany
| | - Hannah Schramm
- Clinical Neuroscience, Ludwig-Maximilians-University Munich, Germany
- Center for Sensorimotor Research; Ludwig-Maximilians-University Munich, Germany
| | - Günter Kugler
- Clinical Neuroscience, Ludwig-Maximilians-University Munich, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders—IFBLMU (DSGZ), Ludwig-Maximilians-University Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan Glasauer
- Clinical Neuroscience, Ludwig-Maximilians-University Munich, Germany
- German Center for Vertigo and Balance Disorders—IFBLMU (DSGZ), Ludwig-Maximilians-University Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University Munich, Germany
- Center for Sensorimotor Research; Ludwig-Maximilians-University Munich, Germany
- Bernstein Center for Computational Neuroscience; Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
33
|
Svoboda J, Telensky P, Blahna K, Vodicka M, Stuchlik A. The role of rat posterior parietal cortex in coordinating spatial representations during place avoidance in dissociated reference frames on a continuously rotating arena (Carousel). Behav Brain Res 2015; 292:1-9. [PMID: 25986405 DOI: 10.1016/j.bbr.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
On the Carousel maze, rats are trained to avoid a sector of a circular rotating arena, punishable by a mild electric foot-shock. In the room frame (RF) variant, the punishable sector remains stable relative to the room, while in the arena frame (AF) version, the sector rotates with the arena. The rats therefore need to disregard local olfactory, tactile and self-motion cues in RF condition and distal extra-maze landmarks in the AF task. In both primates and rodents, the coordination of various spatial reference frames is thought to depend on the posterior parietal cortex (PPC). We have previously shown that PPC-lesioned rats can solve both variants of the Carousel avoidance task. Here we aimed to determine the effects of bilateral thermocoagulation lesion of the PPC in Long-Evans rats on the ability to transition between multiple spatial strategies. The rats were first trained in five sessions in one condition and then another five sessions in the other. The following training schemes were used: RF to AF, RF to RF reversal (sector on the opposite side), and AF to RF. We found a PPC lesion-associated impairment in the transition from the AF to RF task, but not vice versa. Furthermore, PPC lesion impaired performance in RF reversal. In accordance to the literature, we also found an impairment in navigation guided by intra-maze visuospatial cues, but not by extra-maze cues in the water maze. Therefore, the PPC lesion-induced impairment is neither specific to distant cues nor to allocentric processing. Our results thus indicate a role of the PPC in the flexibility in spatial behaviors guided by visual orientation cues.
Collapse
Affiliation(s)
- Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Petr Telensky
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Blahna
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Vodicka
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
34
|
Guimaraes IM, Carvalho TG, Ferguson SS, Pereira GS, Ribeiro FM. The metabotropic glutamate receptor 5 role on motor behavior involves specific neural substrates. Mol Brain 2015; 8:24. [PMID: 25885370 PMCID: PMC4397819 DOI: 10.1186/s13041-015-0113-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/24/2015] [Indexed: 11/22/2022] Open
Abstract
Background The metabotropic glutamate receptor 5 (mGluR5) is involved in various brain functions, including memory, cognition and motor behavior. Regarding locomotor activity, we and others have demonstrated that pharmacological antagonism of mGluR5 promotes hyperkinesia in mice. Moreover, increased locomotor activity can also be observed in mice following the genetic deletion of mGluR5. However, it is still unclear which specific brain substrates contribute to mGluR5-mediated regulation of motor function. Results Thus, to better understand the role of mGluR5 in motor control and to determine which neural substrates are involved in this regulation we performed stereotactic microinfusions of the mGluR5 antagonist, MPEP, into specific brain regions and submitted mice to the open field and rotarod apparatus. Our findings indicate that mGluR5 blockage elicits distinct outcomes in terms of locomotor activity and motor coordination depending on the brain region injected with mGluR5 antagonist. MPEP injection into either the dorsal striatum or dorsal hippocampus resulted in increased locomotor activity, whereas MPEP injection into either the ventral striatum or motor cortex resulted in hypokinesia. Moreover, MPEP injected into the olfactory bulb increased the distance mice traveled in the center of the open field arena. With respect to motor coordination on the rotarod, injection of MPEP into the motor cortex and olfactory bulb elicited decreased latency to fall. Conclusions Taken together, our data suggest that not only primarily motor neural substrates, but also limbic and sensory structures are involved in mGluR5-mediated motor behavior. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0113-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabella M Guimaraes
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Toniana G Carvalho
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Stephen Sg Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5 K8, Canada.
| | - Grace S Pereira
- Nucleo de Neurociencias, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
35
|
Spiers HJ, Gilbert SJ. Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front Hum Neurosci 2015; 9:125. [PMID: 25852515 PMCID: PMC4366647 DOI: 10.3389/fnhum.2015.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/22/2015] [Indexed: 11/21/2022] Open
Abstract
Adapting behavior to accommodate changes in the environment is an important function of the nervous system. A universal problem for motile animals is the discovery that a learned route is blocked and a detour is required. Given the substantial neuroscience research on spatial navigation and decision-making it is surprising that so little is known about how the brain solves the detour problem. Here we review the limited number of relevant functional neuroimaging, single unit recording and lesion studies. We find that while the prefrontal cortex (PFC) consistently responds to detours, the hippocampus does not. Recent evidence suggests the hippocampus tracks information about the future path distance to the goal. Based on this evidence we postulate a conceptual model in which: Lateral PFC provides a prediction error signal about the change in the path, frontopolar and superior PFC support the re-formulation of the route plan as a novel subgoal and the hippocampus simulates the new path. More data will be required to validate this model and understand (1) how the system processes the different options; and (2) deals with situations where a new path becomes available (i.e., shortcuts).
Collapse
Affiliation(s)
- Hugo J Spiers
- Department of Experimental Psychology, UCL Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London London, UK
| | - Sam J Gilbert
- UCL Institute of Cognitive Neuroscience, Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
36
|
Yin LJ, Lou YT, Fan MX, Wang ZX, Hu Y. Neural evidence for the use of digit-image mnemonic in a superior memorist: an fMRI study. Front Hum Neurosci 2015; 9:109. [PMID: 25798098 PMCID: PMC4350403 DOI: 10.3389/fnhum.2015.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Some superior memorists demonstrated exceptional memory for reciting a large body of information. The underlying neural correlates, however, are seldom addressed. C.L., the current holder of Guinness World Record for reciting 67,890 digits in π, participated in this functional magnetic resonance imaging (fMRI) study. Thirteen participants without any mnemonics training were included as controls. Our previous studies suggested that C.L. used a digit-image mnemonic in studying and recalling lists of digits, namely associating 2-digit groups of “00” to “99” with images and generating vivid stories out of them (Hu et al., 2009). Thus, 2-digit condition was included, with 1-digit numbers and letters as control conditions. We hypothesized that 2-digit condition in C.L. should elicit the strongest activity in the brain regions which are associated with his mnemonic. Functional MRI results revealed that bilateral frontal poles (FPs, BA10), left superior parietal lobule (SPL), left premotor cortex (PMC), and left dorsolateral prefrontal cortex (DLPFC), were more engaged in both the study and recall phase of 2-digit condition for C.L. relative to controls. Moreover, the left middle/inferior frontal gyri (M/IFG) and intraparietal sulci (IPS) were less engaged in the study phase of 2-digit condition for C.L. (vs. controls). These results suggested that C.L. relied more on brain regions that are associated with episodic memory other than verbal rehearsal while he used his mnemonic strategies. This study supported theoretical accounts of restructured cognitive mechanisms for the acquisition of superior memory performance.
Collapse
Affiliation(s)
- Li-Jun Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Yu-Ting Lou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Ming-Xia Fan
- Shanghai Key Laboratory of MRI, East China Normal University Shanghai, China
| | - Zhao-Xin Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University Shanghai, China ; Shanghai Key Laboratory of MRI, East China Normal University Shanghai, China
| | - Yi Hu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| |
Collapse
|
37
|
Madl T, Chen K, Montaldi D, Trappl R. Computational cognitive models of spatial memory in navigation space: a review. Neural Netw 2015; 65:18-43. [PMID: 25659941 DOI: 10.1016/j.neunet.2015.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Spatial memory refers to the part of the memory system that encodes, stores, recognizes and recalls spatial information about the environment and the agent's orientation within it. Such information is required to be able to navigate to goal locations, and is vitally important for any embodied agent, or model thereof, for reaching goals in a spatially extended environment. In this paper, a number of computationally implemented cognitive models of spatial memory are reviewed and compared. Three categories of models are considered: symbolic models, neural network models, and models that are part of a systems-level cognitive architecture. Representative models from each category are described and compared in a number of dimensions along which simulation models can differ (level of modeling, types of representation, structural accuracy, generality and abstraction, environment complexity), including their possible mapping to the underlying neural substrate. Neural mappings are rarely explicated in the context of behaviorally validated models, but they could be useful to cognitive modeling research by providing a new approach for investigating a model's plausibility. Finally, suggested experimental neuroscience methods are described for verifying the biological plausibility of computational cognitive models of spatial memory, and open questions for the field of spatial memory modeling are outlined.
Collapse
Affiliation(s)
- Tamas Madl
- School of Computer Science, University of Manchester, Manchester M13 9PL, UK; Austrian Research Institute for Artificial Intelligence, Vienna A-1010, Austria.
| | - Ke Chen
- School of Computer Science, University of Manchester, Manchester M13 9PL, UK
| | - Daniela Montaldi
- School of Psychological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Robert Trappl
- Austrian Research Institute for Artificial Intelligence, Vienna A-1010, Austria
| |
Collapse
|
38
|
Miller AMP, Vedder LC, Law LM, Smith DM. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 2014; 8:586. [PMID: 25140141 PMCID: PMC4122222 DOI: 10.3389/fnhum.2014.00586] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 11/13/2022] Open
Abstract
Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.
Collapse
Affiliation(s)
- Adam M P Miller
- Department of Psychology, Cornell University Ithaca, NY, USA
| | | | - L Matthew Law
- Department of Psychology, Cornell University Ithaca, NY, USA
| | - David M Smith
- Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|
39
|
Si B, Romani S, Tsodyks M. Continuous attractor network model for conjunctive position-by-velocity tuning of grid cells. PLoS Comput Biol 2014; 10:e1003558. [PMID: 24743341 PMCID: PMC3990514 DOI: 10.1371/journal.pcbi.1003558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 02/19/2014] [Indexed: 12/04/2022] Open
Abstract
The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations. How do animals self-localize when they explore the environments with variable velocities? One mechanism is dead reckoning or path-integration. Recent experiments on rodents show that such computation may be performed by grid cells in medial entorhinal cortex. Each grid cell fires strongly when the animal enters locations that define the vertices of a triangular grid. Some of the grid cells show grid firing patterns only when the animal runs along particular directions. Here, we propose that grid cells collectively represent arbitrary conjunctions of positions and movements of the animal. Due to asymmetric recurrent connections, the network has grid patterns as states that are able to move intrinsically with all possible directions and speeds. A velocity-tuned input will activate a subset of the population that prefers similar movements, and the pattern in the network moves with a velocity proportional to the movement of the animal in physical space, up to a fixed rotation. Thus the network ‘imagines’ the movement of the animal, and produces single cell grid firing responses in space with different degree of head-direction selectivity. We propose testable predictions for new experiments to verify our model.
Collapse
Affiliation(s)
- Bailu Si
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandro Romani
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Misha Tsodyks
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
40
|
Wilber AA, Clark BJ, Forster TC, Tatsuno M, McNaughton BL. Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex. J Neurosci 2014; 34:5431-46. [PMID: 24741034 PMCID: PMC3988403 DOI: 10.1523/jneurosci.0511-14.2014] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 01/02/2023] Open
Abstract
Navigation requires coordination of egocentric and allocentric spatial reference frames and may involve vectorial computations relative to landmarks. Creation of a representation of target heading relative to landmarks could be accomplished from neurons that encode the conjunction of egocentric landmark bearings with allocentric head direction. Landmark vector representations could then be created by combining these cells with distance encoding cells. Landmark vector cells have been identified in rodent hippocampus. Given remembered vectors at goal locations, it would be possible to use such cells to compute trajectories to hidden goals. To look for the first stage in this process, we assessed parietal cortical neural activity as a function of egocentric cue light location and allocentric head direction in rats running a random sequence to light locations around a circular platform. We identified cells that exhibit the predicted egocentric-by-allocentric conjunctive characteristics and anticipate orienting toward the goal.
Collapse
Affiliation(s)
- Aaron A Wilber
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | | | | | | | | |
Collapse
|
41
|
Effect of lighting conditions on brain network complexity associated with response learning. Neurosci Lett 2013; 555:182-6. [DOI: 10.1016/j.neulet.2013.09.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 12/28/2022]
|
42
|
Foxworthy WA, Clemo HR, Meredith MA. Laminar and connectional organization of a multisensory cortex. J Comp Neurol 2013; 521:1867-90. [PMID: 23172137 DOI: 10.1002/cne.23264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/07/2012] [Accepted: 11/06/2012] [Indexed: 11/07/2022]
Abstract
The transformation of sensory signals as they pass through cortical circuits has been revealed almost exclusively through studies of the primary sensory cortices, for which principles of laminar organization, local connectivity, and parallel processing have been elucidated. In contrast, almost nothing is known about the circuitry or laminar features of multisensory processing in higher order, multisensory cortex. Therefore, using the ferret higher order multisensory rostral posterior parietal (PPr) cortex, the present investigation employed a combination of multichannel recording and neuroanatomical techniques to elucidate the laminar basis of multisensory cortical processing. The proportion of multisensory neurons, the share of neurons showing multisensory integration, and the magnitude of multisensory integration were all found to differ by layer in a way that matched the functional or connectional characteristics of the PPr. Specifically, the supragranular layers (L2/3) demonstrated among the highest proportions of multisensory neurons and the highest incidence of multisensory response enhancement, while also receiving the highest levels of extrinsic inputs, exhibiting the highest dendritic spine densities, and providing a major source of local connectivity. In contrast, layer 6 showed the highest proportion of unisensory neurons while receiving the fewest external and local projections and exhibiting the lowest dendritic spine densities. Coupled with a lack of input from principal thalamic nuclei and a minimal layer 4, these observations indicate that this higher level multisensory cortex shows functional and organizational modifications from the well-known patterns identified for primary sensory cortical regions.
Collapse
Affiliation(s)
- W Alex Foxworthy
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
43
|
Nilsson J, Ferrier IN, Coventry K, Bester A, Finkelmeyer A. Negative BOLD response in the hippocampus during short-term spatial memory retrieval. J Cogn Neurosci 2013; 25:1358-71. [PMID: 23530922 DOI: 10.1162/jocn_a_00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A parieto-medial temporal pathway is thought to underlie spatial navigation in humans. fMRI was used to assess the role of this pathway, including the hippocampus, in the cognitive processes likely to underlie navigation based on environmental cues. Participants completed a short-term spatial memory task in virtual space, which required no navigation but involved the recognition of a target location from a foil location based on environmental landmarks. The results showed that spatial memory retrieval based on environmental landmarks was indeed associated with increased signal in regions of the parieto-medial temporal pathway, including the superior parietal cortex, the retrosplenial cortex, and the lingual gyrus. However, the hippocampus demonstrated a signal decrease below the fixation baseline during landmark-based retrieval, whereas there was no signal change from baseline during retrieval based on viewer position. In a discussion of the origins of such negative BOLD response in the hippocampus, we consider both a suppression of default activity and an increase in activity without a corresponding boost in CBF as possible mechanisms.
Collapse
Affiliation(s)
- Jonna Nilsson
- Newcastle University, Institute for Ageing and Health, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Taube JS, Shinder M. On the nature of three-dimensional encoding in the cognitive map: Commentary on Hayman, Verriotis, Jovalekic, Fenton, and Jeffery. Hippocampus 2013; 23:14-21. [PMID: 22996337 PMCID: PMC3526945 DOI: 10.1002/hipo.22074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2012] [Indexed: 11/09/2022]
Abstract
A recent article by Hayman, Verriotis, Jovalekic, Fenton, and Jeffery titled Anisotropic encoding of three-dimensional space by place cells and grid cells (2011) explored how place and grid cells respond when rats locomote vertically above the ground. From their results the authors concluded a number of points about rats' abilities to orient and navigate in three dimensions. Here, we review evidence revolving around several issues including: (1) what reference frame rats use when locomoting vertically, (2) whether rats can perceive their height above the ground, (3) whether rats can estimate vertical distance and have a cognitive map in the vertical domain, (4) whether rats can path integrate in the vertical domain, and (5) does processing 3-dimensional representations require a large number of neurons. We argue that the Hayman et al. results can be accounted for by considering the reference frame the animals used in the tasks. Had the rats been facing inward with their limbs in contact with the vertical surface when moving, it is possible that different patterns of place and grid cell activity would have been observed. Further, there is good evidence to indicate that rats can orient and navigate effectively in the vertical domain.
Collapse
Affiliation(s)
- Jeffrey S Taube
- Dartmouth College, Department of Psychological & Brain Sciences, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
45
|
Foxworthy WA, Allman BL, Keniston LP, Meredith MA. Multisensory and unisensory neurons in ferret parietal cortex exhibit distinct functional properties. Eur J Neurosci 2012; 37:910-23. [PMID: 23279600 DOI: 10.1111/ejn.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/18/2012] [Accepted: 11/12/2012] [Indexed: 11/26/2022]
Abstract
Despite the fact that unisensory and multisensory neurons are comingled in every neural structure in which they have been identified, no systematic comparison of their response features has been conducted. Towards that goal, the present study was designed to examine and compare measures of response magnitude, latency, duration and spontaneous activity in unisensory and bimodal neurons from the ferret parietal cortex. Using multichannel single-unit recording, bimodal neurons were observed to demonstrate significantly higher response levels and spontaneous discharge rates than did their unisensory counterparts. These results suggest that, rather than merely reflect different connectional arrangements, unisensory and multisensory neurons are likely to differ at the cellular level. Thus, it can no longer be assumed that the different populations of bimodal and unisensory neurons within a neural region respond similarly to a given external stimulus.
Collapse
Affiliation(s)
- W Alex Foxworthy
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
46
|
Sense of place and place identity: Review of neuroscientific evidence. Health Place 2012; 18:1162-71. [DOI: 10.1016/j.healthplace.2012.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/23/2022]
|
47
|
Arthur JC, Philbeck JW, Kleene NJ, Chichka D. The role of spatial memory and frames of reference in the precision of angular path integration. Acta Psychol (Amst) 2012; 141:112-21. [PMID: 22885073 PMCID: PMC3436123 DOI: 10.1016/j.actpsy.2012.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022] Open
Abstract
Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating.
Collapse
Affiliation(s)
- Joeanna C Arthur
- Department of Psychology, The George Washington University, Washington, DC 20052, United States
| | | | | | | |
Collapse
|
48
|
Abstract
In rats and mice, the hippocampus lies beneath higher than 1 mm of the neocortex. This anatomical feature makes it difficult to experimentally access the hippocampus from the surface of the brain in vivo. This problem may be solved by surgical removal of the cortical tissue above the hippocampus; however, it has not been examined whether this 'hippocampal window' surgery preserves the normal hippocampal function. We bilaterally aspirated the posterior parietal cortex above the dorsal hippocampus of adult male mice. These mice still exhibited normal local field potentials of the hippocampus, normal motor activity, and normal cognitive ability in the water-maze test and contextual fear conditioning, compared with intact or sham-operated controls. Thus, exposed hippocampal preparations provide a useful experimental model to study the physiology of the hippocampus.
Collapse
|
49
|
Harvey CD, Coen P, Tank DW. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 2012; 484:62-8. [PMID: 22419153 PMCID: PMC3321074 DOI: 10.1038/nature10918] [Citation(s) in RCA: 629] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/02/2012] [Indexed: 11/09/2022]
Abstract
The posterior parietal cortex (PPC) plays an important role in many cognitive behaviors; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioral choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (< 100 micrometers). During working memory decision tasks the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits.
Collapse
Affiliation(s)
- Christopher D Harvey
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|
50
|
Begega A, Cuesta M, Rubio S, Méndez M, Santín LJ, Arias JL. Functional networks involved in spatial learning strategies in middle-aged rats. Neurobiol Learn Mem 2012; 97:346-53. [PMID: 22406474 DOI: 10.1016/j.nlm.2012.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/08/2012] [Accepted: 02/23/2012] [Indexed: 11/29/2022]
Abstract
Our aim was to assess the way that middle-aged rats solve spatial learning tasks that can be performed using different strategies. We assessed the brain networks involved in these spatial learning processes using Principal Component Analysis. Two tasks were performed in a complex context, a four-arm radial maze, in which each group must use either an allocentric or an egocentric strategy. Another task was performed in a simple T-maze in which rats must use an egocentric strategy. Brain metabolic activity was quantified to evaluate neural changes related to spatial learning in the described tasks. Our findings revealed that two functional networks are involved in spatial learning in aged rats. One of the networks, spatial processing, is composed of brain regions involved in the integration of sensory and motivational information. The other network, context-dependent processing, mainly involves the dorsal hippocampus and is related to the processing of contextual information from the environment. Both networks work together to solve spatial tasks in a complex spatial environment.
Collapse
Affiliation(s)
- A Begega
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain.
| | | | | | | | | | | |
Collapse
|