1
|
Matthews DB, Kerr E, Zank A, Hartwig J, Garscia A, Stumo S, Sharma P. Recent Investigations Designed to Unravel the Interaction of Age and Alcohol on Behavior and Cognition: Potential Neurobiological Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:243-256. [PMID: 40128482 DOI: 10.1007/978-3-031-81908-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Understanding factors that alter the effect of alcohol in biological systems has been an area of active investigation for several decades. Recently, it has become clear that age is one of the most salient factors influencing how both acute and chronic alcohol exposure alters behavioral function. The following book chapter discusses how alcohol produces differential effects in adolescent animals in comparison to adult and aged (i.e., older) animals. Furthermore, where possible, relevant research identifying possible brain mechanisms mediating the differential effects of alcohol will be discussed. Finally, we highlight a small number of studies where sex and age of the subject interact to modify cognitive impairments produced by alcohol. We conclude that much work still needs to be done to fully understand how age, sex, and alcohol interact to produce the wide range of effects caused by consumption of the drug.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA.
| | - Emily Kerr
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Aeda Zank
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Jadyn Hartwig
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Averi Garscia
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Samuel Stumo
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | | |
Collapse
|
2
|
Morningstar MD, Barnett WH, Goodlett CR, Kuznetsov A, Lapish CC. Understanding ethanol's acute effects on medial prefrontal cortex neural activity using state-space approaches. Neuropharmacology 2021; 198:108780. [PMID: 34480911 PMCID: PMC8488975 DOI: 10.1016/j.neuropharm.2021.108780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022]
Abstract
Acute ethanol (EtOH) intoxication results in several maladaptive behaviors that may be attributable, in part, to the effects of EtOH on neural activity in medial prefrontal cortex (mPFC). The acute effects of EtOH on mPFC function have been largely described as inhibitory. However, translating these observations on function into a mechanism capable of delineating acute EtOH's effects on behavior has proven difficult. This review highlights the role of acute EtOH on electrophysiological measurements of mPFC function and proposes that interpreting these changes through the lens of dynamical systems theory is critical to understand the mechanisms that mediate the effects of EtOH intoxication on behavior. Specifically, the present review posits that the effects of EtOH on mPFC N-methyl-d-aspartate (NMDA) receptors are critical for the expression of impaired behavior following EtOH consumption. This hypothesis is based on the observation that recurrent activity in cortical networks is supported by NMDA receptors, and, when disrupted, may lead to impairments in cognitive function. To evaluate this hypothesis, we discuss the representation of mPFC neural activity in low-dimensional, dynamic state spaces. This approach has proven useful for identifying the underlying computations necessary for the production of behavior. Ultimately, we hypothesize that EtOH-related alterations to NMDA receptor function produces alterations that can be effectively conceptualized as impairments in attractor dynamics and provides insight into how acute EtOH disrupts forms of cognition that rely on mPFC function. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
| | - William H Barnett
- Indiana University-Purdue University Indianapolis, Department of Psychology, USA
| | - Charles R Goodlett
- Indiana University-Purdue University Indianapolis, Department of Psychology, USA; Indiana University School of Medicine, Stark Neurosciences, USA
| | - Alexey Kuznetsov
- Indiana University-Purdue University Indianapolis, Department of Mathematics, USA; Indiana University School of Medicine, Stark Neurosciences, USA
| | - Christopher C Lapish
- Indiana University-Purdue University Indianapolis, Department of Psychology, USA; Indiana University School of Medicine, Stark Neurosciences, USA
| |
Collapse
|
3
|
Morningstar MD, Linsenbardt DN, Lapish CC. Ethanol Alters Variability, But Not Rate, of Firing in Medial Prefrontal Cortex Neurons of Awake-Behaving Rats. Alcohol Clin Exp Res 2020; 44:2225-2238. [PMID: 32966634 PMCID: PMC7680402 DOI: 10.1111/acer.14463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/12/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is a brain region involved in the evaluation and selection of motivationally relevant outcomes. Neural activity in mPFC is altered following acute ethanol (EtOH) use and, in rodent models, doses as low as 0.75 g/kg yield cognitive deficits. Deficits in decision making following acute EtOH are thought to be mediated, at least in part, by decreases in mPFC firing rates (FRs). However, the data leading to this conclusion have been generated exclusively in anesthetized rodents. The present study characterizes the effects of acute EtOH injections on mPFC neural activity in awake-behaving rodents. METHODS Awake-behaving and anesthetized in vivo electrophysiological recordings were performed. We utilized 3 groups: the first received 2 saline injections, the second received a saline injection followed by 1.0 g/kg EtOH, and the last received saline followed by 2 g/kg EtOH. One week later, an anesthetized recording occurred where a saline injection was followed by an injection of 1.0 g/kg EtOH. RESULTS The anesthetized condition showed robust decreases in neural activity and differences in up-down states (UDS) dynamics. In the awake-behaving condition, FRs were grouped according to behavioral state: moving, not-moving, and sleep. The differences in median FRs were found for each treatment and behavioral state combination. A FR decrease was only found in the 2.0 g/kg EtOH treatment during not-moving states. However, robust decreases in FR variability were found across behavioral state in both the 1.0 and 2.0 g/kg EtOH treatment. Sleep was separately analyzed. EtOH modulated the UDS during sleep producing decreases in FRs. CONCLUSIONS In conclusion, the changes in neural activity following EtOH administration in anesthetized animals are not conserved in awake-behaving animals. The most prominent difference following EtOH was a decrease in FR variability suggesting that acute EtOH may be affecting decision making via this mechanism.
Collapse
|
4
|
Macrì S, Karakaya M, Spinello C, Porfiri M. Zebrafish exhibit associative learning for an aversive robotic stimulus. Lab Anim (NY) 2020; 49:259-264. [PMID: 32778807 DOI: 10.1038/s41684-020-0599-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Zebrafish have quickly emerged as a species of choice in preclinical research, holding promise to advance the field of behavioral pharmacology through high-throughput experiments. Besides biological and heuristic considerations, zebrafish also constitute a fundamental tool that fosters the replacement of mammals with less sentient experimental subjects. Notwithstanding these features, experimental paradigms to investigate emotional and cognitive domains in zebrafish are still limited. Studies on emotional memories have provided sound methodologies to investigate fear conditioning in zebrafish, but these protocols may still benefit from a reconsideration of the independent variables adopted to elicit aversion. Here, we designed a fear-conditioning paradigm in which wild-type zebrafish were familiarized over six training sessions with an empty compartment and a fear-eliciting one. The fearful stimulus was represented by three zebrafish replicas exhibiting a fully synchronized and polarized motion as they were maneuvered along 3D trajectories by a robotic platform. When allowed to freely swim between the two compartments in the absence of the robotic stimulus (test session), zebrafish displayed a marked avoidance of the stimulus-paired one. To investigate whether fear conditioning was modulated by psychoactive compounds, two groups of zebrafish were administered ethanol (0.25% and 1.00%, ethanol/water, by volume) a few minutes before the test session. We observed that ethanol administration abolished the conditioned avoidance of the stimulus-paired compartment. Ultimately, this study confirms that robotic stimuli may be used in the design of fear-conditioning paradigms, which are sensitive to pharmacological manipulations.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.,Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Chiara Spinello
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA. .,Department of Biomedical Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
5
|
Van Skike CE, Goodlett C, Matthews DB. Acute alcohol and cognition: Remembering what it causes us to forget. Alcohol 2019; 79:105-125. [PMID: 30981807 DOI: 10.1016/j.alcohol.2019.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Addiction has been conceptualized as a specific form of memory that appropriates typically adaptive neural mechanisms of learning to produce the progressive spiral of drug-seeking and drug-taking behavior, perpetuating the path to addiction through aberrant processes of drug-related learning and memory. From that perspective, to understand the development of alcohol use disorders, it is critical to identify how a single exposure to alcohol enters into or alters the processes of learning and memory, so that involvement of and changes in neuroplasticity processes responsible for learning and memory can be identified early. This review characterizes the effects produced by acute alcohol intoxication as a function of brain region and memory neurocircuitry. In general, exposure to ethanol doses that produce intoxicating effects causes consistent impairments in learning and memory processes mediated by specific brain circuitry, whereas lower doses either have no effect or produce a facilitation of memory under certain task conditions. Therefore, acute ethanol does not produce a global impairment of learning and memory, and can actually facilitate particular types of memory, perhaps particular types of memory that facilitate the development of excessive alcohol use. In addition, the effects on cognition are dependent on brain region, task demands, dose received, pharmacokinetics, and tolerance. Additionally, we explore the underlying alterations in neurophysiology produced by acute alcohol exposure that help to explain these changes in cognition and highlight future directions for research. Through understanding the impact that acute alcohol intoxication has on cognition, the preliminary changes potentially causing a problematic addiction memory can better be identified.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, United States
| | - Charles Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Douglas B Matthews
- Division of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, United States.
| |
Collapse
|
6
|
Abstract
Ethanol produces intoxication through actions on numerous molecular and cellular targets. Adaptations involving these and other targets contribute to chronic drug actions that underlie continued and problematic drinking. Among the mechanisms involved in these ethanol actions are alterations in presynaptic mechanisms of synaptic transmission, including presynaptic protein function and excitation-secretion coupling. At synapses in the central nervous system (CNS), excitation-secretion coupling involves ion channel activation followed by vesicle fusion and neurotransmitter release. These mechanisms are altered by presynaptic neurotransmitter receptors and prominently by G protein-coupled receptors (GPCRs). Studies over the last 20-25 years have revealed that acute ethanol exposure alters neurotransmitter secretion, with especially robust effects on synapses that use the neurotransmitter gamma-aminobutyric acid (GABA). Intracellular signaling pathways involving second messengers such as cyclic AMP and calcium are implicated in these acute ethanol actions. Ethanol-induced release of neuropeptides and small molecule neurotransmitters that act on presynaptic GPCRs also contribute to presynaptic potentiation at synapses in the amygdala and hippocampus and inhibition of GABA release in the striatum. Prolonged exposure to ethanol alters neurotransmitter release at many CNS GABAergic and glutamatergic synapses, and changes in GPCR function are implicated in many of these neuroadaptations. These presynaptic neuroadaptations appear to involve compensation for acute drug effects at some synapses, but "allostatic" effects that result in long-term resetting of synaptic efficacy occur at others. Current investigations are determining how presynaptic neuroadaptations contribute to behavioral changes at different stages of alcohol drinking, with increasing focus on circuit adaptations underlying these behaviors. This chapter will discuss the acute and chronic presynaptic effects of ethanol in the CNS, as well as some of the consequences of these effects in amygdala and corticostriatal circuits that are related to excessive seeking/drinking and ethanol abuse.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
7
|
Novier A, Diaz-Granados JL, Matthews DB. Alcohol use across the lifespan: An analysis of adolescent and aged rodents and humans. Pharmacol Biochem Behav 2015; 133:65-82. [PMID: 25842258 DOI: 10.1016/j.pbb.2015.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Adolescence and old age are unique periods of the lifespan characterized by differential sensitivity to the effects of alcohol. Adolescents and the elderly appear to be more vulnerable to many of alcohol's physiological and behavioral effects compared to adults. The current review explores the differential effects of acute alcohol, predominantly in terms of motor function and cognition, in adolescent and aged humans and rodents. Adolescents are less sensitive to the sedative-hypnotic, anxiolytic, and motor-impairing effects of acute alcohol, but research results are less consistent as it relates to alcohol's effects on cognition. Specifically, previous research has shown adolescents to be more, less, and similarly sensitive to alcohol-induced cognitive deficits compared to adults. These equivocal findings suggest that learning acquisition may be differentially affected by ethanol compared to memory, or that ethanol-induced cognitive deficits are task-dependent. Older rodents appear to be particularly vulnerable to the motor- and cognitive-impairing effects of acute alcohol relative to younger adults. Given that alcohol consumption and abuse is prevalent throughout the lifespan, it is important to recognize age-related differences in response to acute and long-term alcohol. Unfortunately, diagnostic measures and treatment options for alcohol dependence are rarely dedicated to adolescent and aging populations. As discussed, although much scientific advancement has been made regarding the differential effects of alcohol between adolescents and adults, research with the aged is underrepresented. Future researchers should be aware that adolescents and the aged are uniquely affected by alcohol and should continue to investigate alcohol's effects at different stages of maturation.
Collapse
Affiliation(s)
- Adelle Novier
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Jaime L Diaz-Granados
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Douglas B Matthews
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States; University of Wisconsin - Eau Claire, Department of Psychology, HHH 273, Eau Claire, WI 54702, United States.
| |
Collapse
|
8
|
Abstract
RATIONALE There is a high degree of comorbidity between alcohol use disorder and post-traumatic stress disorder (PTSD), but little is known about the interactions of ethanol with traumatic memories. OBJECTIVES Using auditory fear conditioning in rats, we asked if repeated exposure to ethanol could modify the retrieval of fear memories acquired prior to ethanol exposure. METHODS Following auditory fear conditioning, Sprague-Dawley rats were given daily injections of ethanol (1.5 g/kg) or saline over 5 days. Two days later, they were given 20 trials of extinction training and then tested for extinction memory the following day. In a separate experiment, conditioned rats were given repeated ethanol injections and processed for c-Fos immunohistochemistry following a fear retrieval session. RESULTS Two days following the cessation of ethanol, the magnitude of conditioned fear responses (freezing and suppression of bar pressing) was significantly increased. This increase persisted the following day. Waiting 10 days following cessation of ethanol eliminated the effect on fear retrieval. In rats conditioned with low shock levels, repeated exposure to ethanol converted a sub-threshold fear memory into a supra-threshold fear memory. It also increased c-Fos expression in the prelimbic prefrontal cortex, paraventricular thalamus, and the central and basolateral nuclei of the amygdala, areas implicated in the retrieval of fear memories. CONCLUSIONS These results suggest that repeated exposure to ethanol may exacerbate pre-existing traumatic memories.
Collapse
|
9
|
Broadwater M, Spear LP. Consequences of adolescent or adult ethanol exposure on tone and context fear retention: effects of an acute ethanol challenge during conditioning. Alcohol Clin Exp Res 2014; 38:1454-60. [PMID: 24588350 DOI: 10.1111/acer.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND An acute ethanol (EtOH) challenge prior to fear conditioning typically disrupts fear retention to contextual cues to a greater degree than fear retention to a discrete tone cue, and adolescent rats are less sensitive than adults to these EtOH-induced disruptions of context fear memory. Given that some research suggests that repeated EtOH exposure during adolescence may "lock-in" adolescent-typical EtOH sensitivity into adulthood, the purpose of this study was to determine whether adults exposed to EtOH as adolescents would be less sensitive to EtOH-induced disruptions of context fear. METHODS Male Sprague-Dawley rats were given 4 g/kg intragastric EtOH (25% v/v) or water every 48 hours for a total of 11 exposures during adolescence (postnatal day [P] 28 to 48) or adulthood (P70-90). After a 22-day non-EtOH period, animals were acutely challenged with 1 g/kg intraperitoneal EtOH or saline 10 minutes prior to tone or context (noncued) fear conditioning. Tone and context fear retention was subsequently examined. RESULTS Regardless of age or exposure history, typical deficits in context fear retention were evident after EtOH challenge during conditioning. Similarly, tone fear retention was disrupted in all animals that were trained in the presence of EtOH, which was somewhat surprising given the relative resistance of tone fear retention to an acute EtOH challenge. CONCLUSIONS These results do not support the notion of a "lock-in" of adolescent-typical EtOH sensitivity as there was no influence of exposure age on sensitivity to the disruptive effects of an acute EtOH challenge. Thus, it appears that not all adolescent-like EtOH sensitivities persist into adulthood after prior EtOH exposure during adolescence.
Collapse
Affiliation(s)
- Margaret Broadwater
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
10
|
Raybuck JD, Lattal KM. Bridging the interval: theory and neurobiology of trace conditioning. Behav Processes 2014; 101:103-11. [PMID: 24036411 PMCID: PMC3943893 DOI: 10.1016/j.beproc.2013.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/25/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
An early finding in the behavioral analysis of learning was that conditioned responding weakens as the conditioned stimulus (CS) and unconditioned stimulus (US) are separated in time. This "trace" conditioning effect has been the focus of years of research in associative learning. Theoretical accounts of trace conditioning have focused on mechanisms that allow associative learning to occur across long intervals between the CS and US. These accounts have emphasized degraded contingency effects, timing mechanisms, and inhibitory learning. More recently, study of the neurobiology of trace conditioning has shown that even a short interval between the CS and US alters the circuitry recruited for learning. Here, we review some of the theoretical and neurobiological mechanisms underlying trace conditioning with an emphasis on recent studies of trace fear conditioning. Findings across many studies have implications not just for how we think about time and conditioning, but also for how we conceptualize fear conditioning in general, suggesting that circuitry beyond the usual suspects needs to be incorporated into current thinking about fear, learning, and anxiety.
Collapse
Affiliation(s)
- Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
11
|
Tipps ME, Raybuck JD, Lattal KM. Substance abuse, memory, and post-traumatic stress disorder. Neurobiol Learn Mem 2013; 112:87-100. [PMID: 24345414 DOI: 10.1016/j.nlm.2013.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
A large body of literature demonstrates the effects of abused substances on memory. These effects differ depending on the drug, the pattern of delivery (acute or chronic), and the drug state at the time of learning or assessment. Substance use disorders involving these drugs are often comorbid with anxiety disorders, such as post-traumatic stress disorder (PTSD). When the cognitive effects of these drugs are considered in the context of the treatment of these disorders, it becomes clear that these drugs may play a deleterious role in the development, maintenance, and treatment of PTSD. In this review, we examine the literature evaluating the cognitive effects of three commonly abused drugs: nicotine, cocaine, and alcohol. These three drugs operate through both common and distinct neurobiological mechanisms and alter learning and memory in multiple ways. We consider how the cognitive and affective effects of these drugs interact with the acquisition, consolidation, and extinction of learned fear, and we discuss the potential impediments that substance abuse creates for the treatment of PTSD.
Collapse
Affiliation(s)
- Megan E Tipps
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
12
|
Yorgason JT, Ferris MJ, Steffensen SC, Jones SR. Frequency-dependent effects of ethanol on dopamine release in the nucleus accumbens. Alcohol Clin Exp Res 2013; 38:438-47. [PMID: 24117706 DOI: 10.1111/acer.12287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ethanol (EtOH) is known to have excitatory effects on dopamine (DA) release, with moderate-to-high doses (0.5 to 2.5 g/kg) of acute EtOH enhancing DA neuron firing rates in the ventral tegmental area (VTA) and DA levels in the nucleus accumbens (NAc). EtOH has also been shown to reduce DA activity, with moderate doses (1 to 2 g/kg) attenuating electrically evoked release, and higher doses (5 g/kg) decreasing NAc DA levels, demonstrating a biphasic effect of EtOH on DA release. The purpose of the current study was to evaluate EtOH's inhibitory effects on NAc DA terminal release under low- and high-frequency stimulation conditions. METHODS Using fast-scan cyclic voltammetry in NAc slices from C57BL/6J mice, we examined EtOH's (40 to 160 mM) effects on DA release under several different stimulation parameters, varying frequency (5 to 125 Hz), number of pulses (1 to 10), and stimulation intensity (50 to 350 μA). Additionally, calcium concentrations were manipulated under high-frequency stimulation conditions (20 Hz, 10 pulses, 350 μA) to determine whether EtOH's effects were dependent upon calcium concentration, and by extension, the amount of DA release. RESULTS Acute EtOH (40 to 160 mM) inhibited DA release to a greater extent under high-frequency, multiple-pulse stimulation conditions, with increased sensitivity at 5 and 10 pulses and frequencies of 20 Hz or higher. High-frequency, multiple-pulse stimulations also resulted in greater DA release compared with single-pulse release, which was controlled by reducing stimulation intensity. Under reduced DA conditions, high-frequency stimulations still showed increased EtOH sensitivity. Reducing calcium levels also decreased DA release at high-frequency stimulations, but did not affect EtOH sensitivity. CONCLUSIONS EtOH appears to inhibit DA release at NAc terminals under high-frequency stimulation conditions that are similar to release events observed during phasic burst firing in DAergic neurons, suggesting that EtOH may provide inhibition of DA terminals selectively during phasic signaling, while leaving tonic DA terminal activity unaffected.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
13
|
Consequences of ethanol exposure on cued and contextual fear conditioning and extinction differ depending on timing of exposure during adolescence or adulthood. Behav Brain Res 2013; 256:10-9. [PMID: 23938333 DOI: 10.1016/j.bbr.2013.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 02/05/2023]
Abstract
Some evidence suggests that adolescents are more sensitive than adults to ethanol-induced cognitive deficits and that these effects may be long-lasting. The purpose of Exp 1 was to determine if early-mid adolescent [postnatal day (P) 28-48] intermittent ethanol exposure would affect later learning and memory in a Pavlovian fear conditioning paradigm differently than comparable exposures in adulthood (P70-90). In Exp 2 animals were exposed to ethanol during mid-late adolescence (P35-55) to assess whether age of initiation within the adolescent period would influence learning and memory differentially. Male Sprague-Dawley rats were given 4 g/kg i.g. ethanol (25%) or water every 48 h for a total of 11 exposures. After a 22 day non-ethanol period, animals were fear conditioned to a context (relatively hippocampal-dependent task) or tone (amygdala-dependent task), followed by retention tests and extinction (mPFC-dependent) of this conditioning. Despite similar acquisition, a deficit in context fear retention was evident in animals exposed to ethanol in early adolescence, an effect not observed after a comparable ethanol exposure in mid-late adolescence or adulthood. In contrast, animals that were exposed to ethanol in mid-late adolescence or adulthood showed enhanced resistance to context extinction. Together these findings suggest that repeated ethanol imparts long-lasting consequences on learning and memory, with outcomes that differ depending on age of exposure. These results may reflect differential influence of ethanol on the brain as it changes throughout ontogeny and may have implications for alcohol use not only throughout the developmental period of adolescence, but also in adulthood.
Collapse
|
14
|
Broadwater M, Spear LP. Age differences in fear retention and extinction in male Sprague-Dawley rats: effects of ethanol challenge during conditioning. Behav Brain Res 2013; 252:377-87. [PMID: 23810415 DOI: 10.1016/j.bbr.2013.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/16/2013] [Accepted: 06/23/2013] [Indexed: 01/11/2023]
Abstract
Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 min prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24h thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp 1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally related.
Collapse
Affiliation(s)
- Margaret Broadwater
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | | |
Collapse
|
15
|
RETRACTED: Acute ethanol administration affects memory reactivation: A look at the neuronal density and apoptosis in the rat hippocampus. Pharmacol Biochem Behav 2012; 102:321-8. [DOI: 10.1016/j.pbb.2012.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/10/2012] [Accepted: 04/21/2012] [Indexed: 11/16/2022]
|
16
|
Hunt PS. Supplemental choline during the periweaning period protects against trace conditioning impairments attributable to post-training ethanol exposure in adolescent rats. Behav Neurosci 2012; 126:593-8. [PMID: 22687150 DOI: 10.1037/a0028878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of posttraining alcohol administration on trace fear conditioning. Posttraining alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next 3 days animals were administered 2.5 g/kg ethanol or water control, and conditional stimulus (CS)-elicited freezing was measured on PD 34. Results indicated that posttraining alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given posttraining ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development.
Collapse
Affiliation(s)
- Pamela S Hunt
- Department of Psychology, College of William & Mary, Williamsburg, VA 23187-8795, USA.
| |
Collapse
|
17
|
Alijan-pour J, Abrari K, Lashkar bluki T, Ghorbanian MT, Goudarzi I, Elahdadi Salmani M. Ethanol disrupts reactivated contextual conditioned fear memory: behavioral and histological perspectives. CELL JOURNAL 2012; 13:265-74. [PMID: 23507995 PMCID: PMC3584476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 08/13/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This research study is an attempt to examine whether the administration of ethanol after memory reactivation would modulate subsequent expression of memory in rats. Additionally, we examined whether this administration alters the density of Cornu Ammonis (CA)1 and CA3 pyramidal and dentate gyrus (DG) granule cells. MATERIALS AND METHODS In this experimental study, adult male Wistar rats (200-300 g) were trained in a fear conditioning system using two 1 second, 0.6 mA shocks with an interval of 180 seconds. Twenty four hours later rats were returned to the chamber for 120 seconds. Immediately after reactivation they were injected with ethanol (0.5, 1, 1.5 mg/ kg) or saline. 1, 7 and 14 days after reactivation, rats were returned to the context for 5 minutes. Seconds of freezing (absence of all movement except respiration) were scored. In the second experiment (described in the previous paragraph), after test 1, animals were anesthetized with sodium pentobarbital and perfused transcardially with phosphate buffer (10 minutes) and 4% paraformaldehyde (15 minutes). The brains were postfixed in phosphate-buffered 4% paraformaldehyde (24 hours) and 30% sucrose. 10-µm sections were stained with cresyl violet. Data were analyzed by 1-and 2-way ANOVA for repeated measurements by means of SPSS 16.0. Tukey's post hoc test was performed to determine the source of detected significant differences. P <0 .05 were considered significant. Data are presented as mean ± SEM. RESULTS Findings from the first experiment indicated that ethanol at a dose of 1.5 mg/kg significantly impaired recall of memory only in the first test. The density of CA1 and CA3 pyramidal and DG granule cells in the ethanol group was decreased (p< 0.01) compared with control group respectively 43.7%, 35.8%, and 37.8. CONCLUSION The data demonstrate that ethanol exposure impairs post retrieval processes. Moreover, ethanol decreases the density of CA1, CA3 and DG cells. Presumably it would be a correlation between our behavioral and histological results.
Collapse
Affiliation(s)
| | - Kataneh Abrari
- * Corresponding Address:
P.O.Box: 36715-364School of BiologyDamghan UniversityDamghanIran
| | | | | | | | | |
Collapse
|
18
|
McClain JA, Hayes DM, Morris SA, Nixon K. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 2011; 519:2697-710. [PMID: 21484803 DOI: 10.1002/cne.22647] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.
Collapse
Affiliation(s)
- Justin A McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
19
|
Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats. Alcohol 2011; 45:473-83. [PMID: 21600728 DOI: 10.1016/j.alcohol.2011.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 02/17/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.
Collapse
|
20
|
Pautassi RM, Myers M, Spear LP, Molina JC, Spear NE. Ethanol induces second-order aversive conditioning in adolescent and adult rats. Alcohol 2011; 45:45-55. [PMID: 21187242 DOI: 10.1016/j.alcohol.2010.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/15/2010] [Accepted: 10/12/2010] [Indexed: 12/16/2022]
Abstract
Alcohol abuse and dependence are considered public health problems, with an etiological onset often occurring during late childhood and adolescence, and understanding age-related differences in ethanol sensitivity is important. Low to moderate ethanol doses (0.5 and 2.0 g/kg, intragastrically [i.g.]) induce single-trial, appetitive second-order place conditioning (SOC) in adolescent, but not adult, rats. Recent studies have demonstrated that adolescents may be less sensitive than adults to the aversive properties of ethanol, reflected by conditioned taste aversion. The present study assessed the aversive motivational effects of high-dose ethanol (3.0 and 3.25 g/kg, i.g., for adolescents and adults, respectively) using SOC. Experiment 1 revealed similar blood and brain ethanol levels in adolescent and adult rats given 3.0 and 3.25 g/kg ethanol, respectively. In Experiment 2, animals received ethanol or vehicle paired with intraoral pulses of sucrose (conditioned stimulus 1 [CS1]). After one, two, or three conditioning trials, the rats were presented with the CS1 while in a distinctive chamber (CS2). When tested for CS2 preference, ethanol-treated animals exhibited reduced preference for the CS2 compared with controls. This result, indicative of ethanol-mediated aversive place conditioning, was similar for adolescents and adults; for females and males; and after one, two, or three training trials. In conjunction with previous results, the present study showed that, in adolescent rats subjected to SOC, ethanol's hedonic effects vary from appetitive to aversive as the ethanol dose increases. Adolescent and adult animals appear to perceive the postingestive effects of high-dose ethanol as similarly aversive when assessed by SOC.
Collapse
|
21
|
Pautassi RM, Nizhnikov ME, Truxell E, Varlinskaya EI, Spear NE. Ontogeny of ethanol intake in alcohol preferring (P) and alcohol nonpreferring (NP) rats. Dev Psychobiol 2010; 53:234-45. [PMID: 21400486 DOI: 10.1002/dev.20516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/04/2010] [Indexed: 11/09/2022]
Abstract
There is a scarcity of research on ethanol affinity in alcohol-preferring (P) rats before weaning and it is unknown if neonate P rats exhibit ethanol intake preferences comparable to those observed in adult P rats. This study examined ethanol intake in P and alcohol-nonpreferring (NP) rats 3 hr after birth (Experiment 1, surrogate nipple test), at postnatal days (PD) 8, 12, and 18 (Experiment 2, consumption from the floor procedure) and at adolescence (Experiment 3, two-bottle choice test at PD32). The high-preference genotype was readily expressed 3 hr after birth. P neonates drank twice as much ethanol as their NP counterparts. This heightened ethanol preference transiently reversed at P8, reemerged as weaning approached (P18) and was fully expressed during adolescence. These results help to clarify the ontogeny of genetic predisposition for ethanol. Genetic predisposition for higher ethanol intake in P than in NP rats seems to be present immediately following birth.
Collapse
Affiliation(s)
- Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Córdoba, C.P 5000, Argentina.
| | | | | | | | | |
Collapse
|
22
|
Foster JA, Burman MA. Evidence for hippocampus-dependent contextual learning at postnatal day 17 in the rat. Learn Mem 2010; 17:259-66. [PMID: 20427514 DOI: 10.1101/lm.1755810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully developed until PD 23. Alternatively, the hippocampus may be functional prior to PD 23, but unable to cooperate with the amygdala for fearful learning. The current experiments investigate this by separating the phases of conditioning across developmental stages. Rats were allowed to learn about the context on one day and to form the fearful association on another. Rats exposed to the context on PD 17 exhibited significant fear only when trained and tested a week later (PD 23, 24), but not on consecutive days (PD 18, 19), demonstrating that rats can learn about a context as early as PD 17. Further experiments clarify that it is associative mechanisms that are developing between PD 18 and 23. Finally, the hippocampus was lesioned prior to training to ensure the task is being solved in a hippocampus-dependent manner. These data provide compelling evidence that the hippocampus is functional for contextual learning as early as PD 17, however, its connection to the amygdala or other relevant brain structures may not yet be fully developed.
Collapse
Affiliation(s)
- Jennifer A Foster
- Program in Neuroscience, Bates College, Lewiston, Maine 04240-6028, USA
| | | |
Collapse
|
23
|
Chin VS, Van Skike CE, Matthews DB. Effects of ethanol on hippocampal function during adolescence: a look at the past and thoughts on the future. Alcohol 2010; 44:3-14. [PMID: 20113870 DOI: 10.1016/j.alcohol.2009.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/14/2009] [Accepted: 10/22/2009] [Indexed: 12/20/2022]
Abstract
It has been demonstrated by several laboratories that ethanol, both acute and chronic, produces effects that are age dependent. Specifically, adolescent rats are less sensitive to the hypnotic and motor-impairing effects of ethanol but are more sensitive to the hypothermic effects of the drug. However, the results on hippocampal function are not as clear. For example, there have been mixed findings regarding adolescent sensitivity of hippocampal-dependent (spatial) memory in response to ethanol. The current review explores the present state of the field as it relates to ethanol's effects in the hippocampus, particularly as it relates to spatial memory. In addition, we review potential neurobiological mechanisms that might underlie the age-dependent effects of ethanol in the hippocampus. Finally, future directions are proposed that will advance the state of the field as it relates to ethanol's effect during this developmental period.
Collapse
Affiliation(s)
- Vivien S Chin
- Department of Psychology, Baylor University Additions Research Consortium, Waco, TX, USA
| | | | | |
Collapse
|