1
|
Young FJ, Alcalde Anton A, Melo-Flórez L, Couto A, Foley J, Monllor M, McMillan WO, Montgomery SH. Enhanced long-term memory and increased mushroom body plasticity in Heliconius butterflies. iScience 2024; 27:108949. [PMID: 38357666 PMCID: PMC10864207 DOI: 10.1016/j.isci.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Heliconius butterflies exhibit expanded mushroom bodies, a key brain region for learning and memory in insects, and a novel foraging strategy unique among Lepidoptera - traplining for pollen. We tested visual long-term memory across six Heliconius and outgroup Heliconiini species. Heliconius species exhibited greater fidelity to learned colors after eight days without reinforcement, with further evidence of recall at 13 days. We also measured the plastic response of the mushroom body calyces over this time period, finding substantial post-eclosion expansion and synaptic pruning in the calyx of Heliconius erato, but not in the outgroup Heliconiini Dryas iulia. In Heliconius erato, visual associative learning experience specifically was associated with a greater retention of synapses and recall accuracy was positively correlated with synapse number. These results suggest that increases in the size of specific brain regions and changes in their plastic response to experience may coevolve to support novel behaviors.
Collapse
Affiliation(s)
- Fletcher J. Young
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Amaia Alcalde Anton
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - Antoine Couto
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jessica Foley
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | | | - Stephen H. Montgomery
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
2
|
Gandia KM, Cappa F, Baracchi D, Hauber ME, Beani L, Uy FMK. Caste, Sex, and Parasitism Influence Brain Plasticity in a Social Wasp. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.803437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain plasticity is widespread in nature, as it enables adaptive responses to sensory demands associated with novel stimuli, environmental changes and social conditions. Social Hymenoptera are particularly well-suited to study neuroplasticity, because the division of labor amongst females and the different life histories of males and females are associated with specific sensory needs. Here, we take advantage of the social wasp Polistes dominula to explore if brain plasticity is influenced by caste and sex, and the exploitation by the strepsipteran parasite Xenos vesparum. Within sexes, male wasps had proportionally larger optic lobes, while females had larger antennal lobes, which is consistent with the sensory needs of sex-specific life histories. Within castes, reproductive females had larger mushroom body calyces, as predicted by their sensory needs for extensive within-colony interactions and winter aggregations, than workers who frequently forage for nest material and prey. Parasites had different effects on female and male hosts. Contrary to our predictions, female workers were castrated and behaviorally manipulated by female or male parasites, but only showed moderate differences in brain tissue allocation compared to non-parasitized workers. Parasitized males maintained their reproductive apparatus and sexual behavior. However, they had smaller brains and larger sensory brain regions than non-parasitized males. Our findings confirm that caste and sex mediate brain plasticity in P. dominula, and that parasitic manipulation drives differential allocation of brain regions depending on host sex.
Collapse
|
3
|
O'Donnell S, Bulova S, Barrett M. Experience-expectant brain plasticity corresponds to caste-specific abiotic challenges in dampwood termites (Zootermopsis angusticollis and Z. nevadensis). Naturwissenschaften 2021; 108:57. [PMID: 34665344 DOI: 10.1007/s00114-021-01763-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023]
Abstract
Hypotheses for adaptive brain investment predict associations between the relative sizes of functionally distinct brain regions and the sensory/cognitive demands animals confront. We measured developmental differences in the relative sizes of visual processing brain regions (optic lobes) among dampwood termite castes to test whether optic lobe investment matches caste differences in exposure to visually complex environments. The winged primary reproductives (Kings/Queens) on mating flights are the only caste to leave the dark nest cavities and as predicted, Kings/Queens showed greater relative investment in optic lobe tissue than nestbound (neotenic) reproductives and soldiers in two dampwood termite species (Zootermopsis angusticollis and Z. nevadensis). Relative optic lobe size spanned more than an order of magnitude among the castes we studied, suggesting the growth of the optic lobes incurs substantial tissue costs. Optic lobe growth was experience-expectant: the optic lobes of Z. angusticollis brachypterous nymphs, which typically develop into Kings/Queens, were relatively larger than the optic lobes of apterous nymphs, which precede neotenics and soldiers, and relative optic lobe size of nestbound brachypterous nymphs was statistically similar to that of Kings/Queens. Experience-expectant brain tissue growth is rarely documented in insects, likely because it entails high potential costs of tissue production and maintenance and relatively low immediate sensory/cognitive benefits. We develop hypotheses for the conditions under which experience-expectant growth in brain regions could be favored by natural selection.
Collapse
Affiliation(s)
- Sean O'Donnell
- Departments of Biodiversity Earth & Environmental Science and Biology, Drexel University, Philadelphia, PA, 19081, USA.
| | - Susan Bulova
- Departments of Biodiversity Earth & Environmental Science and Biology, Drexel University, Philadelphia, PA, 19081, USA
| | - Meghan Barrett
- Departments of Biodiversity Earth & Environmental Science and Biology, Drexel University, Philadelphia, PA, 19081, USA
| |
Collapse
|
4
|
Brain structure differences between solitary and social wasp species are independent of body size allometry. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:911-916. [PMID: 31705196 DOI: 10.1007/s00359-019-01374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Evolutionary transitions in social behavior are often associated with changes in species' brain architecture. A recent comparative analysis showed that the structure of brains of wasps in the family Vespidae differed between solitary and social species: the mushroom bodies, a major integrative brain region, were larger relative to brain size in the solitary species. However, the earlier study did not account for body size effects, and species' relative mushroom body size increases with body size in social Vespidae. Here we extend the previous analysis by measuring the effects of body size variation on brain structure differences between social and solitary vespid wasps. We asked whether total brain volume was greater relative to body size in the solitary species, and whether relative mushroom body size was greater in solitary species, after accounting for body size effects. Both total brain volume and relative mushroom body volume were significantly greater in the solitary species after accounting for body size differences. Therefore, body size allometry did not explain the solitary versus social species differences in brain structure. The evolutionary transition from solitary to social behavior in Vespidae was accompanied by decreases in total brain size and in relative mushroom body size.
Collapse
|
5
|
Evolutionarily conserved anatomical and physiological properties of olfactory pathway through fourth-order neurons in a species of grasshopper (Hieroglyphus banian). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:813-838. [DOI: 10.1007/s00359-019-01369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
|
6
|
Adaptations during Maturation in an Identified Honeybee Interneuron Responsive to Waggle Dance Vibration Signals. eNeuro 2019; 6:ENEURO.0454-18.2019. [PMID: 31451603 PMCID: PMC6731536 DOI: 10.1523/eneuro.0454-18.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
Honeybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations through their antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged adult and forager honeybees. Although comparison of morphological reconstructions of the neurons revealed no significant changes in gross dendritic features, consistent and region-dependent changes were found in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and nonstimulus periods in foragers compared with newly emerged adult bees. The observed differences in neurons of foragers compared with newly emerged adult honeybees suggest refined connectivity, improved signal propagation, and enhancement of response features possibly important for the network processing of air vibration signals relevant for the waggle dance communication of honeybees.
Collapse
|
7
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
8
|
O’Donnell S, Bulova S, Barrett M, von Beeren C. Brain investment under colony-level selection: soldier specialization in Eciton army ants (Formicidae: Dorylinae). BMC ZOOL 2018. [DOI: 10.1186/s40850-018-0028-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
O'Donnell S, Bulova S. Development and evolution of brain allometry in wasps (Vespidae): size, ecology and sociality. CURRENT OPINION IN INSECT SCIENCE 2017; 22:54-61. [PMID: 28805639 DOI: 10.1016/j.cois.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
We review research on brain development and brain evolution in the wasp family Vespidae. Basic vespid neuroanatomy and some aspects of functional neural circuitry are well-characterized, and genomic tools for exploring brain plasticity are being developed. Although relatively modest in terms of species richness, the Vespidae include species spanning much of the known range of animal social complexity, from solitary nesters to highly eusocial species with some of the largest known colonies and multiple reproductives. Eusocial species differ in behavior and ecology including variation in queen/worker caste differentiation and in diurnal/nocturnal activity. Species differences in overall brain size are strongly associated with brain allometry; relative sizes of visual processing tissues increase at faster rates than antennal processing tissues. The lower relative size of the central-processing mushroom bodies (MB) in eusocial species compared to solitary relatives suggests sociality may relax demands on individual cognitive abilities. However, queens have greater relative MB volumes than their workers, and MB development is positively associated with social dominance status in some species. Fruitful areas for future investigations of adaptive brain investment in the clade include sampling of key overlooked taxa with diverse social structures, and the analysis of neural correlations with ecological divergence in foraging resources and diel activity patterns.
Collapse
Affiliation(s)
- Sean O'Donnell
- Department of Biodiversity Earth & Environmental Science, Drexel University, Philadelphia, PA, USA.
| | - Susan Bulova
- Department of Biodiversity Earth & Environmental Science, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Caste differences in the mushroom bodies of swarm-founding paper wasps: implications for brain plasticity and brain evolution (Vespidae, Epiponini). Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2344-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Fahrbach SE, Van Nest BN. Synapsin-based approaches to brain plasticity in adult social insects. CURRENT OPINION IN INSECT SCIENCE 2016; 18:27-34. [PMID: 27939707 DOI: 10.1016/j.cois.2016.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Development of the mushroom bodies continues after adult eclosion in social insects. Synapsins, phosphoproteins abundant in presynaptic boutons, are not required for development of the nervous system but have as their primary function modulation of synaptic transmission. A monoclonal antibody against a conserved region of Drosophila synapsin labels synaptic structures called microglomeruli in the mushroom bodies of adult social insects, permitting studies of microglomerular volume, density, and number. The results point to multiple forms of brain plasticity in social insects: age-based and experience-based maturation that results in a decrease in density coupled with an increase in volume of individual microglomeruli in simultaneous operation with shorter term changes in density produced by specific life experiences.
Collapse
Affiliation(s)
- Susan E Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, United States.
| | - Byron N Van Nest
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, United States
| |
Collapse
|
12
|
Giraldo YM, Rusakov A, Diloreto A, Kordek A, Traniello JFA. Age, worksite location, neuromodulators, and task performance in the ant Pheidole dentata. Behav Ecol Sociobiol 2016; 70:1441-1455. [PMID: 28042198 DOI: 10.1007/s00265-016-2153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Social insect workers modify task performance according to age-related schedules of behavioral development, and/or changing colony labor requirements based on flexible responses that may be independent of age. Using known-age minor workers of the ant Pheidole dentata throughout 68% of their 140-day laboratory lifespan, we asked whether workers found inside or outside the nest differed in task performance and if behaviors were correlated with and/or causally linked to changes in brain serotonin (5HT) and dopamine (DA). Our results suggest that task performance patterns of individually assayed minors collected at these two spatially different worksites were independent of age. Outside-nest minors displayed significantly higher levels of predatory behavior and greater activity than inside-nest minors, but these groups did not differ in brood care or phototaxis. We examined the relationship of 5HT and DA to these behaviors in known-age minors by quantifying individual brain titers. Both monoamines did not increase significantly from 20 to 95 days of age. DA did not appear to directly regulate worksite location, although titers were significantly higher in outside-nest than inside-nest workers. Pharmacological depletion of 5HT did not affect nursing, predation, phototaxis or activity. Our results suggest that worker task capabilities are independent of age beyond 20 days, and only predatory behavior can be consistently predicted by spatial location. This could reflect worker flexibility or variability in the behavior of individuals collected at each location, which could be influenced by complex interactions between age, worksite location, social interactions, neuromodulators, and other environmental and internal regulators of behavior.
Collapse
Affiliation(s)
| | - Adina Rusakov
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Adrianna Kordek
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
13
|
Montgomery SH, Merrill RM, Ott SR. Brain composition inHeliconiusbutterflies, posteclosion growth and experience-dependent neuropil plasticity. J Comp Neurol 2016; 524:1747-69. [DOI: 10.1002/cne.23993] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen H. Montgomery
- Department of Genetics, Evolution & Environment; University College London; London UK
- Smithsonian Tropical Research Institute; Panama
| | - Richard M. Merrill
- Smithsonian Tropical Research Institute; Panama
- Department of Zoology; University of Cambridge; Cambridge UK
| | - Swidbert R. Ott
- Department of Neuroscience, Psychology and Behaviour; University of Leicester; Leicester UK
| |
Collapse
|
14
|
Into the black and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2016; 103:31. [DOI: 10.1007/s00114-016-1353-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/28/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
15
|
Ou J, Gao Z, Song L, Ho MS. Analysis of Glial Distribution in Drosophila Adult Brains. Neurosci Bull 2016; 32:162-70. [PMID: 26810782 DOI: 10.1007/s12264-016-0014-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
Neurons and glia are the two major cell types in the nervous system and work closely with each other to program neuronal interplay. Traditionally, neurons are thought to be the major cells that actively regulate processes like synapse formation, plasticity, and behavioral output. Glia, on the other hand, serve a more supporting role. To date, accumulating evidence has suggested that glia are active participants in virtually every aspect of neuronal function. Despite this, fundamental features of how glia interact with neurons, and their spatial relationships, remain elusive. Here, we describe the glial cell population in Drosophila adult brains. Glial cells extend and tightly associate their processes with major structures such as the mushroom body (MB), ellipsoid body (EB), and antennal lobe (AL) in the brain. Glial cells are distributed in a more concentrated manner in the MB. Furthermore, subsets of glia exhibit distinctive association patterns around different neuronal structures. Whereas processes extended by astrocyte-like glia and ensheathing glia wrap around the MB and infiltrate into the EB and AL, cortex glia stay where cell bodies of neurons are and remain outside of the synaptic regions structured by EB or AL.
Collapse
Affiliation(s)
- Jiayao Ou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zongbao Gao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Li Song
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Margaret S Ho
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China. .,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China. .,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
16
|
O'Donnell S, Bulova SJ, DeLeon S, Khodak P, Miller S, Sulger E. Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proc Biol Sci 2015; 282:20150791. [PMID: 26085587 PMCID: PMC4590486 DOI: 10.1098/rspb.2015.0791] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 11/12/2022] Open
Abstract
The social brain hypothesis assumes the evolution of social behaviour changes animals' ecological environments, and predicts evolutionary shifts in social structure will be associated with changes in brain investment. Most social brain models to date assume social behaviour imposes additional cognitive challenges to animals, favouring the evolution of increased brain investment. Here, we present a modification of social brain models, which we term the distributed cognition hypothesis. Distributed cognition models assume group members can rely on social communication instead of individual cognition; these models predict reduced brain investment in social species. To test this hypothesis, we compared brain investment among 29 species of wasps (Vespidae family), including solitary species and social species with a wide range of social attributes (i.e. differences in colony size, mode of colony founding and degree of queen/worker caste differentiation). We compared species means of relative size of mushroom body (MB) calyces and the antennal to optic lobe ratio, as measures of brain investment in central processing and peripheral sensory processing, respectively. In support of distributed cognition predictions, and in contrast to patterns seen among vertebrates, MB investment decreased from solitary to social species. Among social species, differences in colony founding, colony size and caste differentiation were not associated with brain investment differences. Peripheral lobe investment did not covary with social structure. These patterns suggest the strongest changes in brain investment--a reduction in central processing brain regions--accompanied the evolutionary origins of eusociality in Vespidae.
Collapse
Affiliation(s)
- Sean O'Donnell
- Department of Biodiversity Earth and Environmental Science, Drexel University, Philadelphia, PA 19104, USA
| | - Susan J Bulova
- Department of Biodiversity Earth and Environmental Science, Drexel University, Philadelphia, PA 19104, USA
| | - Sara DeLeon
- Department of Biodiversity Earth and Environmental Science, Drexel University, Philadelphia, PA 19104, USA Institute for Phytopathology and Applied Zoology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Paulina Khodak
- Department of Biodiversity Earth and Environmental Science, Drexel University, Philadelphia, PA 19104, USA
| | - Skye Miller
- Department of Biodiversity Earth and Environmental Science, Drexel University, Philadelphia, PA 19104, USA
| | - Elisabeth Sulger
- Department of Biodiversity Earth and Environmental Science, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Muenz TS, Groh C, Maisonnasse A, Le Conte Y, Plettner E, Rössler W. Neuronal plasticity in the mushroom body calyx during adult maturation in the honeybee and possible pheromonal influences. Dev Neurobiol 2015; 75:1368-84. [PMID: 25784170 DOI: 10.1002/dneu.22290] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
Abstract
Honeybee workers express a pronounced age-dependent polyethism switching from various indoor duties to foraging outside the hive. This transition is accompanied by tremendous changes in the sensory environment that sensory systems and higher brain centers have to cope with. Foraging and age have earlier been shown to be associated with volume changes in the mushroom bodies (MBs). Using age- and task-controlled bees this study provides a detailed framework of neuronal maturation processes in the MB calyx during the course of natural behavioral maturation. We show that the MB calyx volume already increases during the first week of adult life. This process is mainly driven by broadening of the Kenyon cell dendritic branching pattern and then followed by pruning of projection neuron axonal boutons during the actual transition from indoor to outdoor duties. To further investigate the flexible regulation of division of labor and its neuronal correlates in a honeybee colony, we studied the modulation of the nurse-forager transition via a chemical communication system, the primer pheromone ethyl oleate (EO). EO is found at high concentrations on foragers in contrast to nurse bees and was shown to delay the onset of foraging. In this study, EO effects on colony behavior were not as robust as expected, and we found no direct correlation between EO treatment and synaptic maturation in the MB calyx. In general, we assume that the primer pheromone EO rather acts in concert with other factors influencing the onset of foraging with its effect being highly adaptive.
Collapse
Affiliation(s)
- Thomas S Muenz
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Claudia Groh
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Alban Maisonnasse
- INRA UR 406, Abeilles et Environnement, Site Agroparc, 84914, Avignon, France
| | - Yves Le Conte
- INRA UR 406, Abeilles et Environnement, Site Agroparc, 84914, Avignon, France
| | - Erika Plettner
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Wolfgang Rössler
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
18
|
Sulger E, McAloon N, Bulova SJ, Sapp J, O'Donnell S. Evidence for adaptive brain tissue reduction in obligate social parasites (Polyergus mexicanus) relative to their hosts (Formica fusca). Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elisabeth Sulger
- Department of Biodiversity, Earth & Environmental Science; Drexel University; Philadelphia PA 19104 USA
| | - Nola McAloon
- Department of Biodiversity, Earth & Environmental Science; Drexel University; Philadelphia PA 19104 USA
| | - Susan J. Bulova
- Department of Biodiversity, Earth & Environmental Science; Drexel University; Philadelphia PA 19104 USA
| | - Joseph Sapp
- Department of Ecology & Evolutionary Biology; University of California-Santa Cruz; Santa Cruz CA 95064 USA
| | - Sean O'Donnell
- Department of Biodiversity, Earth & Environmental Science; Drexel University; Philadelphia PA 19104 USA
| |
Collapse
|
19
|
Scholl C, Wang Y, Krischke M, Mueller MJ, Amdam GV, Rössler W. Light exposure leads to reorganization of microglomeruli in the mushroom bodies and influences juvenile hormone levels in the honeybee. Dev Neurobiol 2014; 74:1141-53. [DOI: 10.1002/dneu.22195] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Christina Scholl
- Behavioral Physiology and Sociobiology (Zoology II); Biocenter; University of Würzburg; 97074 Würzburg Germany
| | - Ying Wang
- School of Life Sciences; Arizona State University; Tempe 85004 Arizona USA
| | - Markus Krischke
- Pharmaceutical Biology; Biocenter; Julius-von-Sachs-Institute for Biosciences; University of Würzburg; 97082 Würzburg Germany
| | - Martin J. Mueller
- Pharmaceutical Biology; Biocenter; Julius-von-Sachs-Institute for Biosciences; University of Würzburg; 97082 Würzburg Germany
| | - Gro V. Amdam
- School of Life Sciences; Arizona State University; Tempe 85004 Arizona USA
- Department of Chemistry; Biotechnology; and Food Science; University of Life Sciences; 1432 Aas Norway
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II); Biocenter; University of Würzburg; 97074 Würzburg Germany
| |
Collapse
|
20
|
O’Donnell S, Clifford MR, Bulova SJ, DeLeon S, Papa C, Zahedi N. A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1667-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Jones BM, Leonard AS, Papaj DR, Gronenberg W. Plasticity of the worker bumblebee brain in relation to age and rearing environment. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:250-61. [PMID: 24281415 DOI: 10.1159/000355845] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/18/2013] [Indexed: 02/03/2023]
Abstract
The environment experienced during development can dramatically affect the brain, with possible implications for sensory processing, learning, and memory. Although the effects of single sensory modalities on brain development have been repeatedly explored, the additive or interactive effects of multiple modalities have been less thoroughly investigated. We asked how experience with multisensory stimuli affected brain development in the bumblebee Bombus impatiens. First, to establish the timeline of brain development during early adulthood, we estimated regional brain volumes across a range of ages. We discovered significant age-related volume changes in nearly every region of the brain. Next, to determine whether these changes were dependent upon certain environmental stimuli, we manipulated the visual and olfactory stimuli available to newly emerged bumblebee workers in a factorial manner. Newly emerged bumblebees were maintained in the presence or absence of supplemental visual and/or olfactory stimuli for 7 days, after which the volumes of several brain regions were estimated. We found that the volumes of the mushroom body lobes and calyces were larger in the absence of visual stimuli. Additionally, visual deprivation was associated with the expression of larger antennal lobes, the primary olfactory processing regions of the brain. In contrast, exposure to plant-derived olfactory stimuli did not have a significant effect on brain region volumes. This study is the first to explore the separate and interactive effects of visual and olfactory stimuli on bee brain development. Assessing the timing and sensitivity of brain development is a first step toward understanding how different rearing environments differentially affect regional brain volumes in this species. Our findings suggest that environmental factors experienced during the first week of adulthood can modify bumblebee brain development in many subtle ways.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Ariz., USA
| | | | | | | |
Collapse
|
22
|
O'Donnell S, Clifford MR, DeLeon S, Papa C, Zahedi N, Bulova SJ. Brain size and visual environment predict species differences in paper wasp sensory processing brain regions (hymenoptera: vespidae, polistinae). BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:177-84. [PMID: 24192228 DOI: 10.1159/000354968] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022]
Abstract
The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume.
Collapse
Affiliation(s)
- Sean O'Donnell
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, Pa., USA
| | | | | | | | | | | |
Collapse
|
23
|
Muscedere ML, Djermoun A, Traniello JFA. Brood-care experience, nursing performance, and neural development in the ant Pheidole dentata. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1501-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Giraldo YM, Patel E, Gronenberg W, Traniello JFA. Division of labor and structural plasticity in an extrinsic serotonergic mushroom body neuron in the ant Pheidole dentata. Neurosci Lett 2012; 534:107-11. [PMID: 23274482 DOI: 10.1016/j.neulet.2012.11.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 11/29/2022]
Abstract
Worker polyphenisms in ants enable insightful analyses of neuronal underpinnings of division of labor, a crucial aspect of animal social organization. In the ant Pheidole dentata, which has a dimorphic worker caste, serotonin titer increases in the brain with age, modulating pheromonal recruitment communication and foraging, behaviors characteristic of mature individuals. Serotonin-immunoreactive (5HT-IR) neurons are found in the mushroom bodies (MB) and may modulate multi-sensory information processing associated with cues and social signals guiding task performance. The volume of this neuropil correlates with worker subcaste and age in P. dentata, but the role of structural variation in individual extrinsic MB neurons in division of labor in ants is poorly understood. We tested the hypothesis that branching complexity in a 5HT-IR calyx input neuron (CIN) in the MBs increases with age in minor workers of P. dentata in association with task repertoire expansion. We further predicted that major workers, which are defense specialists, have less elaborate CIN axonal arbors at any age in comparison to minor workers, which are task generalists. Contrary to our predictions, immunohistochemical and morphometric analyses revealed significantly greater CIN branching in both newly eclosed and mature major workers, and identified an effect of worker age on branching complexity only in majors. Our results indicate a modulatory role of the CIN in subcaste-specific behaviors and suggest behavioral specialization may be associated with the elaboration of specific MB neurons.
Collapse
|
25
|
Abstract
Dendrites represent the compartment of neurons primarily devoted to collecting and computating input. Far from being static structures, dendrites are highly dynamic during development and appear to be capable of plastic changes during the adult life of animals. During development, it is a combination of intrinsic programs and external signals that shapes dendrite morphology; input activity is a conserved extrinsic factor involved in this process. In adult life, dendrites respond with more modest modifications of their structure to various types of extrinsic information, including alterations of input activity. Here, the author reviews classical and recent evidence of dendrite plasticity in invertebrates and vertebrates and current progress in the understanding of the molecular mechanisms that underlie this plasticity. Importantly, some fundamental questions such as the functional role of dendrite remodeling and the causal link between structural modifications of neurons and plastic processes, including learning, are still open.
Collapse
Affiliation(s)
- Gaia Tavosanis
- Department of Molecular Neurobiology, Dendrite Differentiation Group, MPI of Neurobiology, Munich, Germany.
| |
Collapse
|
26
|
Dobrin SE, Herlihy JD, Robinson GE, Fahrbach SE. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:409-19. [PMID: 21262388 PMCID: PMC3101279 DOI: 10.1016/j.asd.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/10/2011] [Accepted: 01/15/2011] [Indexed: 05/30/2023]
Abstract
The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells.
Collapse
Affiliation(s)
- Scott E Dobrin
- Neuroscience Program, Wake Forest University, Graduate School of Arts and Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
27
|
Coming of age in an ant colony: cephalic muscle maturation accompanies behavioral development in Pheidole dentata. Naturwissenschaften 2011; 98:783-93. [DOI: 10.1007/s00114-011-0828-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/13/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
|
28
|
Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? J Neurosci 2010; 30:6461-5. [PMID: 20445072 DOI: 10.1523/jneurosci.0841-10.2010] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The insect mushroom bodies (MBs) are paired brain centers which, like the mammalian hippocampus, have a prominent function in learning and memory. Despite convergent evidence for their crucial role in the formation and storage of associative memories, little is known about the mechanisms underlying such storage. In mammals and other species, the consolidation of stable memories is accompanied by structural plasticity involving variations in synapse number and/or size. Here, we address the question of whether the formation of olfactory long-term memory (LTM) could be associated with changes in the synaptic architecture of the MB networks. For this, we took advantage of the modular architecture of the honeybee MB neuropil, where synaptic contacts between olfactory input and MB neurons are segregated into discrete units (microglomeruli) which can be easily visualized and counted. We show that the density in microglomeruli increases as a specific olfactory LTM is formed, while the volume of the neuropil remains constant. Such variation is reproducible and is clearly correlated with memory consolidation, as it requires gene transcription. Thus stable structural synaptic rearrangements, including the growth of new synapses, seem to be a common property of insect and mammalian brain networks involved in the storage of stable memory traces.
Collapse
|