1
|
Tapias-Espinosa C, García-Brito S, Vila-Solés L, Huguet G, Kádár E, Aldavert-Vera L, Segura-Torres P, Carreras-Badosa G. Deep brain stimulation of the medial forebrain bundle promotes the extinction of active avoidance and is associated with mossy fibber sprouting in the hippocampus. Behav Brain Res 2025; 481:115411. [PMID: 39736429 DOI: 10.1016/j.bbr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) causes intrusive symptoms and avoidance behaviours due to dysregulation in various brain regions, including the hippocampus. Deep brain stimulation (DBS) shows promise for refractory PTSD cases. In rodents, DBS improves fear extinction and reduces anxiety-like behaviours, but its effects on active-avoidance extinction remain unexplored. Medial forebrain bundle intracranial self-stimulation (MFB-ICSS) enhances two-way active avoidance (TWAA) conditioning by activating brain regions involved in reinforcement, learning, and memory, including the hippocampus. METHODS This study investigates whether reinforcing DBS in the MFB enhances the extinction of conditioned active avoidance responses and examines its effects on hippocampal mossy fibber sprouting using Timm staining. We administered MFB-ICSS treatment following two 50-trial extinction sessions and assessed short-term (24 hours) and long-term (28 days) extinction in a TWAA task in rats. RESULTS MFB-ICSS enhances short-term extinction and accelerates long-term reacquisition of extinction in a spontaneous recovery test. MFB-ICSS also promotes mossy fibber sprouting in the CA2 and CA3 regions of the hippocampus, with CA3 staining positively correlated with the level of extinction. CONCLUSIONS These findings suggest that MFB stimulation may enhance extinction and promote neural plasticity mechanisms, including mossy fibber sprouting. However, it does not fully prevent spontaneous recovery, highlighting the need for further optimization of treatment parameters. These results are relevant for PTSD as they suggest a potential enhancement in therapy for extinguishing avoidance responses in patients.
Collapse
Affiliation(s)
- Carles Tapias-Espinosa
- Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, La Rioja, Spain.
| | - Soleil García-Brito
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Vila-Solés
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Huguet
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Elisabet Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Laura Aldavert-Vera
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Segura-Torres
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
2
|
Puig-Parnau I, Garcia-Brito S, Vila-Soles L, Riberas A, Aldavert-Vera L, Segura-Torres P, Kádár E, Huguet G. Intracranial Self-stimulation of the Medial Forebrain Bundle Ameliorates Memory Disturbances and Pathological Hallmarks in an Alzheimer's Disease Model by Intracerebral Administration of Amyloid-β in Rats. Neuroscience 2023; 512:16-31. [PMID: 36646411 DOI: 10.1016/j.neuroscience.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
No curative or fully effective treatments are currently available for Alzheimer's disease (AD), the most common form of dementia. Electrical stimulation of deep brain areas has been proposed as a novel neuromodulatory therapeutic approach. Previous research from our lab demonstrates that intracranial self-stimulation (ICSS) targeting medial forebrain bundle (MFB) facilitates explicit and implicit learning and memory in rats with age or lesion-related memory impairment. At a molecular level, MFB-ICSS modulates the expression of plasticity and neuroprotection-related genes in memory-related brain areas. On this basis, we suggest that MFB could be a promising stimulation target for AD treatment. In this study, we aimed to assess the effects of MFB-ICSS on both explicit memory as well as the levels of neuropathological markers ptau and drebrin (DBN) in memory-related areas, in an AD rat model obtained by Aβ icv-injection. A total of 36 male rats were trained in the Morris water maze on days 26-30 after Aβ injection and tested on day 33. Results demonstrate that this Aβ model displayed spatial memory impairment in the retention test, accompanied by changes in the levels of DBN and ptau in lateral entorhinal cortex and hippocampus, resembling pathological alterations in early AD. Administration of MFB-ICSS treatment consisting of 5 post-training sessions to AD rats managed to reverse the memory deficits as well as the alteration in ptau and DBN levels. Thus, this paper reports both cognitive and molecular effects of a post-training reinforcing deep brain stimulation procedure in a sporadic AD model for the first time.
Collapse
Affiliation(s)
| | - Soleil Garcia-Brito
- Universitat Autònoma de Barcelona, Unitat Psicobiologia, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain
| | - Laia Vila-Soles
- Universitat Autònoma de Barcelona, Unitat Psicobiologia, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain
| | - Andrea Riberas
- Universitat de Girona, Departament de Biologia, 17003 Girona, Spain
| | - Laura Aldavert-Vera
- Universitat Autònoma de Barcelona, Unitat Psicobiologia, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain
| | - Pilar Segura-Torres
- Universitat Autònoma de Barcelona, Unitat Psicobiologia, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain.
| | - Elisabet Kádár
- Universitat de Girona, Departament de Biologia, 17003 Girona, Spain
| | - Gemma Huguet
- Universitat de Girona, Departament de Biologia, 17003 Girona, Spain.
| |
Collapse
|
3
|
Vila-Solés L, García-Brito S, Aldavert-Vera L, Kádár E, Huguet G, Morgado-Bernal I, Segura-Torres P. Protocol to assess rewarding brain stimulation as a learning and memory modulating treatment: Comparison between self-administration and experimenter-administration. Front Behav Neurosci 2022; 16:1046259. [PMID: 36590922 PMCID: PMC9798322 DOI: 10.3389/fnbeh.2022.1046259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Intracranial electrical self-stimulation (ICSS) is a useful procedure in animal research. This form of administration ensures that areas of the brain reward system (BRS) are being functionally activated, since the animals must perform an operant response to self-administer an electrical stimulus. Rewarding post-training ICSS of the medial forebrain bundle (MFB), an important system of the BRS, has been shown to consistently improve rats' acquisition and retention in several learning tasks. In the clinical setting, deep brain stimulation (DBS) of different targets is currently being used to palliate the memory impairment that occurs in some neurodegenerative diseases. However, the stimulation of the MFB has only been used to treat emotional alterations, not memory disorders. Since DBS stimulation treatments in humans are exclusively administered by external sources, studies comparing the efficacy of that form of application to a self-administered stimulation are key to the translationality of ICSS. This protocol compares self-administered (ICSS) and experimenter-administered (EAS) stimulation of the MFB on the spatial Morris Water Maze task (MWM). c-Fos immunohistochemistry procedure was carried out to evaluate neural activation after retention. Results show that the stimulation of the MFB improves the MWM task regardless of the form of administration, although some differences in c-Fos expression were found. Present results suggest that MFB-ICSS is a valid animal model to study the effects of MFB electrical stimulation on memory, which could guide clinical applications of DBS. The present protocol is a useful guide for establishing ICSS behavior in rats, which could be used as a learning and memory-modulating treatment.
Collapse
Affiliation(s)
- Laia Vila-Solés
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soleil García-Brito
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Soleil García-Brito,
| | - Laura Aldavert-Vera
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabet Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Gemma Huguet
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Ignacio Morgado-Bernal
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Segura-Torres
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:110000. [PMID: 32512130 DOI: 10.1016/j.pnpbp.2020.110000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is associated with enhanced anxiety and reduced reward processing leading to impaired cognitive flexibility. These pathological changes during depression are accompanied by dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its impaired regulation by the amygdala. Notably, the electrical stimulation of brain reward areas produces an antidepressant effect in both MDD patients and animal models of depression. However, the effects of chronic electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-associated anxiety and accompanying changes in plasma corticosterone levels, structural, and neurochemical alterations in the amygdala are unknown. Here, we used the neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and vehicle administered rats were subjected to bilateral electrode implantation at LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. Rats were then tested for anhedonic and anxiety-like behaviors, followed by estimation of plasma corticosterone levels, assessment of amygdalar volumes and neuronal/glial numbers, levels of monoamines and their metabolites in the amygdala. We found that chronic ICSS of LH-MFB reverses CLI-induced anhedonia and anxiety. Interestingly, amelioration of CLI-induced enhanced anhedonia and anxiety in ICSS rats was associated with partial reversal of enhanced plasma corticosterone levels, hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. We suggest that beneficial effects of ICSS on CLI-induced anxiety at least in part mediated by the restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that brain stimulation rewarding experience might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
5
|
Intracranial Self-Stimulation Modulates Levels of SIRT1 Protein and Neural Plasticity-Related microRNAs. Mol Neurobiol 2020; 57:2551-2562. [PMID: 32219698 DOI: 10.1007/s12035-020-01901-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Deep brain stimulation (DBS) of reward system brain areas, such as the medial forebrain bundle (MFB), by means of intracranial self-stimulation (ICSS), facilitates learning and memory in rodents. MFB-ICSS has been found capable of modifying different plasticity-related proteins, but its underlying molecular mechanisms require further elucidation. MicroRNAs (miRNAs) and the longevity-associated SIRT1 protein have emerged as important regulatory molecules implicated in neural plasticity. Thus, we aimed to analyze the effects of MFB-ICSS on miRNAs expression and SIRT1 protein levels in hippocampal subfields and serum. We used OpenArray to select miRNA candidates differentially expressed in the dentate gyrus (DG) of ICSS-treated (3 sessions, 45' session/day) and sham rats. We further analyzed the expression of these miRNAs, together with candidates selected after bibliographic screening (miR-132-3p, miR-134-5p, miR-146a-5p, miR-181c-5p) in DG, CA1, and CA3, as well as in serum, by qRT-PCR. We also assessed tissue and serum SIRT1 protein levels by Western Blot and ELISA, respectively. Expression of miR-132-3p, miR-181c-5p, miR-495-3p, and SIRT1 protein was upregulated in DG of ICSS rats (P < 0.05). None of the analyzed molecules was regulated in CA3, while miR-132-3p was also increased in CA1 (P = 0.011) and serum (P = 0.048). This work shows for the first time that a DBS procedure, specifically MFB-ICSS, modulates the levels of plasticity-related miRNAs and SIRT1 in specific hippocampal subfields. The mechanistic role of these molecules could be key to the improvement of memory by MFB-ICSS. Moreover, regarding the proposed clinical applicability of DBS, serum miR-132 is suggested as a potential treatment biomarker.
Collapse
|
6
|
Orexin-1 receptor blockade differentially affects spatial and visual discrimination memory facilitation by intracranial self-stimulation. Neurobiol Learn Mem 2020; 169:107188. [PMID: 32061874 DOI: 10.1016/j.nlm.2020.107188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023]
Abstract
Intracranial self-stimulation (ICSS) of the medial forebrain bundle is an effective treatment to facilitate memory. Performance in both explicit and implicit memory tasks has been improved by ICSS, and this treatment has even been capable of recovering loss of memory function due to lesions or old age. Several neurochemical systems have been studied in regard to their role in ICSS effects on memory, however the possible involvement of the orexinergic system in this facilitation has yet to be explored. The present study aims to examine the relationship between the OX1R and the facilitative effects of ICSS on two different types of memory tasks, both carried out in the Morris Water Maze: spatial and visual discrimination. Results show that the OX1R blockade, by intraventricular administration of SB-334867, partially negates the facilitating effect of ICSS on spatial memory, whereas it hinders ICSS facilitation of the discrimination task. However, ICSS treatment was capable of compensating for the severe detrimental effects of OX1R blockade on both memory paradigms. These results suggest different levels of involvement of the orexinergic system in the facilitation of memory by ICSS, depending on the memory task.
Collapse
|
7
|
Rewarding deep brain stimulation at the medial forebrain bundle favours avoidance conditioned response in a remote memory test, hinders extinction and increases neurogenesis. Behav Brain Res 2020; 378:112308. [PMID: 31629001 DOI: 10.1016/j.bbr.2019.112308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Intracranial Self-Stimulation (ICSS) at the medial forebrain bundle consistently facilitates learning and memory in rats when administered post-training or when administered non-concurrent to training, but its scope regarding remote memory has not yet been studied. The present work aims to test whether the combination of these two forms of ICSS administration can cause a greater persistence of the facilitating effect on remote retention and affect neurogenesis in the dentate gyrus (DG) of the hippocampus. Rats were trained in active avoidance conditioning and tested in two retention sessions (10 and 90 days) and later extinction. Subjects received an ICSS session after each of the five avoidance acquisition sessions (post-training treatment) and half of them also received ten additional ICSS sessions during the rest period between retention tests (non-concurrent treatment). All the stimulated groups showed a higher performance in acquisition and retention sessions, but only the rats receiving both ICSS treatments showed greater resistance to extinction. Remarkably, at seven months, rats receiving the non-concurrent ICSS treatment had a greater number of DCX-positive cells in the DG as well as a higher amount of new-born cells within the granular layer compared to rats that did not receive this additional ICSS treatment. Our present findings significantly extend the temporal window of the facilitating effect of ICSS on active avoidance and demonstrate a neurogenic effect of rewarding medial forebrain bundle stimulation.
Collapse
|
8
|
García-Brito S, Aldavert-Vera L, Huguet G, Álvarez A, Kádár E, Segura-Torres P. Increased training compensates for OX1R blockage-impairment of spatial memory and c-Fos expression in different cortical and subcortical areas. Behav Brain Res 2018; 353:21-31. [PMID: 29953904 DOI: 10.1016/j.bbr.2018.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 11/29/2022]
Abstract
It has been suggested that the orexin system modulates learning and memory-related processes. However, the possible influence that training could have on the effect of the blockade of orexin-A selective receptor (OX1R) on a spatial memory task has not been explored. Therefore, the present study attempts to compare the effects of OX1R antagonist SB-334867 infusion on spatial memory in two different conditions in the Morris Water Maze (MWM). This experiment evaluated the animals' performance in weak training (2 trials per session) vs strong training (6 trials per session) protocols in a spatial version of the MWM. We found that in the 2-trial condition the post-training SB-334867 infusion had a negative effect on consolidation as well as on the retention and reversal learning of the task 72 h later. This effect was not apparent in the 6-trial condition. In addition, while the strong training groups showed a general increase in c-Fos expression in several brain areas of the hippocampal-thalamic-cortical circuit, SB-334867 administration had the opposite effect in areas that have been previously reported to have a high density of OX1R. Specifically, the SB-infused group in the 2-trial condition showed a decrease in c-Fos immunoreactivity in the dentate gyrus, granular retrosplenial and prelimbic cortices, and centrolateral thalamic nucleus. This was not observed for subjects in the 6-trial condition. The activation of these areas could constitute a neuroanatomical substrate involved in the compensatory mechanisms of training upon SB-334867 impairing effects on a MWM spatial task.
Collapse
Affiliation(s)
- Soleil García-Brito
- Universitat Autónoma de Barcelona, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain.
| | - Laura Aldavert-Vera
- Universitat Autónoma de Barcelona, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain
| | - Gemma Huguet
- Universitat de Girona, Departament de Biologia, 17071 Girona, Spain
| | - Adam Álvarez
- Universitat Autónoma de Barcelona, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain
| | - Elisabet Kádár
- Universitat de Girona, Departament de Biologia, 17071 Girona, Spain
| | - Pilar Segura-Torres
- Universitat Autónoma de Barcelona, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Kádár E, Varela EV, Aldavert-Vera L, Huguet G, Morgado-Bernal I, Segura-Torres P. Arc protein expression after unilateral intracranial self-stimulation of the medial forebrain bundle is upregulated in specific nuclei of memory-related areas. BMC Neurosci 2018; 19:48. [PMID: 30089460 PMCID: PMC6083502 DOI: 10.1186/s12868-018-0449-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Background Intracranial Self-Stimulation (ICSS) of the medial forebrain bundle (MFB) is a deep brain stimulation procedure, which has a powerful enhancement effect on explicit and implicit memory. However, the downstream synaptic plasticity events of MFB-ICSS in memory related areas have not been described thoroughly. This study complements previous work studying the effect of MFB-ICSS on the expression of the activity-regulated cytoskeleton-associated (Arc) protein, which has been widely established as a synaptic plasticity marker. We provide new integrated measurements from memory related regions and take possible regional hemispheric differences into consideration. Results Arc protein expression levels were analyzed 4.5 h after MFB-ICSS by immunohistochemistry in the hippocampus, habenula, and memory related amygdalar and thalamic nuclei, in both the ipsilateral and contralateral hemispheres to the stimulating electrode location. MFB-ICSS was performed using the same paradigm which has previously been shown to facilitate memory. Our findings illustrate that MFB-ICSS upregulates the expression of Arc protein in the oriens and radiatum layers of ipsilateral CA1 and contralateral CA3 hippocampal regions; the hilus bilaterally, the lateral amygdala and dorsolateral thalamic areas as well as the central medial thalamic nucleus. In contrast, the central amygdala, mediodorsal and paraventricular thalamic nuclei, and the habenular complex did not show changes in Arc expression after MFB-ICSS. Conclusions Our results expand our knowledge of which specific memory related areas MFB-ICSS activates and, motivates the definition of three functionally separate groups according to their Arc-related synaptic plasticity response: (1) the hippocampus and dorsolateral thalamic area, (2) the central medial thalamic area and (3) the lateral amygdala. Electronic supplementary material The online version of this article (10.1186/s12868-018-0449-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabet Kádár
- Departament de Biologia, Universitat de Girona, 17071, Girona, Spain. .,Department of Biology, Sciences Faculty, University of Girona, C/Mª Aurèlia Capmany 40, Camous Montilivi, 17003, Girona, Spain.
| | - Eva Vico Varela
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.,Douglas Mental Health University Institute, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Laura Aldavert-Vera
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Gemma Huguet
- Departament de Biologia, Universitat de Girona, 17071, Girona, Spain
| | - Ignacio Morgado-Bernal
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Pilar Segura-Torres
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Kádár E, Ramoneda M, Aldavert-Vera L, Huguet G, Morgado-Bernal I, Segura-Torres P. Rewarding brain stimulation reverses the disruptive effect of amygdala damage on emotional learning. Behav Brain Res 2014; 274:43-52. [DOI: 10.1016/j.bbr.2014.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
|
11
|
Ilango A, Shumake J, Wetzel W, Ohl FW. Contribution of emotional and motivational neurocircuitry to cue-signaled active avoidance learning. Front Behav Neurosci 2014; 8:372. [PMID: 25386127 PMCID: PMC4209857 DOI: 10.3389/fnbeh.2014.00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/08/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Anton Ilango
- Leibniz Institute for Neurobiology , Magdeburg , Germany
| | - Jason Shumake
- Department of Psychology, The University of Texas , Austin , USA
| | - Wolfram Wetzel
- Leibniz Institute for Neurobiology , Magdeburg , Germany
| | - Frank W Ohl
- Leibniz Institute for Neurobiology , Magdeburg , Germany ; Institute of Biology, University of Magdeburg , Magdeburg , Germany ; Center for Behavioral Brain Sciences (CBBS) , Magdeburg , Germany
| |
Collapse
|
12
|
Kádár E, Huguet G, Aldavert-Vera L, Morgado-Bernal I, Segura-Torres P. Intracranial self stimulation upregulates the expression of synaptic plasticity related genes and Arc protein expression in rat hippocampus. GENES BRAIN AND BEHAVIOR 2013; 12:771-9. [PMID: 23898803 DOI: 10.1111/gbb.12065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/31/2013] [Accepted: 07/25/2013] [Indexed: 11/30/2022]
Abstract
Post-training lateral hypothalamus (LH) intracranial self stimulation (ICSS) has a reliable enhancing effect on explicit memory formation evaluated in hippocampus-dependent tasks such as the Morris water maze. In this study, the effects of ICSS on gene expression in the hippocampus are examined 4.5 h post treatment by using oligonucleotide microarray and real-time PCR, and by measuring Arc protein levels in the different layers of hippocampal subfields through immunofluorescence. The microarray data analysis resulted in 65 significantly regulated genes in rat ICSS hippocampi compared to sham, including cAMP-mediated signaling as one of the most significantly enriched Database for Annotation, Visualization and Integrated Discovery (DAVID) functional categories. In particular, expression of CREB-dependent synaptic plasticity related genes (c-Fos, Arc, Bdnf, Ptgs-2 and Crem and Icer) was regulated in a time-dependent manner following treatment administration. Immunofluorescence results showed that ICSS treatment induced a significant increase in Arc protein expression in CA1 and DG hippocampal subfields. This empirical evidence supports our hypothesis that the effect of ICSS on improved or restored memory functions might be mediated by increased hippocampal expression of activity-dependent synaptic plasticity related genes, including Arc protein expression, as neural mechanisms related to memory consolidation.
Collapse
Affiliation(s)
- E Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | | | | | | | | |
Collapse
|
13
|
Intracranial self-stimulation facilitates active-avoidance retention and induces expression of c-Fos and Nurr1 in rat brain memory systems. Behav Brain Res 2013; 250:46-57. [DOI: 10.1016/j.bbr.2013.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/15/2013] [Accepted: 04/19/2013] [Indexed: 01/05/2023]
|
14
|
Ilango A, Shumake J, Wetzel W, Scheich H, Ohl FW. The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front Neurosci 2012; 6:132. [PMID: 23049495 PMCID: PMC3442182 DOI: 10.3389/fnins.2012.00132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/25/2012] [Indexed: 11/13/2022] Open
Abstract
Learning from punishment is a powerful means for behavioral adaptation with high relevance for various mechanisms of self-protection. Several studies have explored the contribution of released dopamine (DA) or responses of DA neurons on reward seeking using rewards such as food, water, and sex. Phasic DA signals evoked by rewards or conditioned reward predictors are well documented, as are modulations of these signals by such parameters as reward magnitude, probability, and deviation of actually occurring from expected rewards. Less attention has been paid to DA neuron firing and DA release in response to aversive stimuli, and the prediction and avoidance of punishment. In this review, we first focus on DA changes in response to aversive stimuli as measured by microdialysis and voltammetry followed by the change in electrophysiological signatures by aversive stimuli and fearful events. We subsequently focus on the role of DA and effect of DA manipulations on signaled avoidance learning, which consists of learning the significance of a warning cue through Pavlovian associations and the execution of an instrumental avoidance response. We present a coherent framework utilizing the data on microdialysis, voltammetry, electrophysiological recording, electrical brain stimulation, and behavioral analysis. We end by outlining current gaps in the literature and proposing future directions aimed at incorporating technical and conceptual progress to understand the involvement of reward circuit on punishment based decisions.
Collapse
Affiliation(s)
- Anton Ilango
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Ilango A, Shumake J, Wetzel W, Scheich H, Ohl FW. Effects of ventral tegmental area stimulation on the acquisition and long-term retention of active avoidance learning. Behav Brain Res 2011; 225:515-21. [PMID: 21856334 DOI: 10.1016/j.bbr.2011.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/02/2011] [Accepted: 08/07/2011] [Indexed: 11/15/2022]
Abstract
The development of avoidance learning depends on dopamine release in forebrain regions. Previous studies indicated that rewarding brain stimulation facilitated two-way active avoidance learning. However, it is not clear whether the temporal relationship of brain stimulation to the training session (before, during or after) is important. To investigate the role of stimulation condition (no stimulation, self-stimulation only, or self-stimulation plus avoidance stimulation) and sequence of self-stimulation training (before or after avoidance training), we used a 3×2 factorial design, in which every level of stimulation was paired with every level of sequence for a total of 6 different groups. The results suggest that self-stimulation either before or after avoidance learning improved acquisition performance, but acquisition was maximal when stimulation was also given during acquisition trials. Importantly, the sequence of self-stimulation (before or after each acquisition session) was irrelevant to this beneficial effect. However, stimulation had no apparent effect on long-term retention when tested 10 days later under conditions of no stimulation, except that the performance of the group that had previously received avoidance-contingent stimulation deteriorated over the course of 60 trials. This may reflect frustration from the omission of expected reward. These results are relevant for optimizing brain stimulation to improve learning.
Collapse
Affiliation(s)
- Anton Ilango
- Leibniz Institute for Neurobiology, Brenneckestrasse. 6, D-39118 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Effects of muscarinic receptor antagonism in the basolateral amygdala on two-way active avoidance. Exp Brain Res 2011; 209:455-64. [PMID: 21318348 DOI: 10.1007/s00221-011-2576-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to investigate whether the blockade of muscarinic receptors (mRs) in the basolateral amygdala (BLA), which receives important cholinergic inputs related to avoidance learning, affects the consolidation of two-way active avoidance (TWAA). In Experiment 1, adult male Wistar rats were bilaterally infused with scopolamine (SCOP, 20 μg/site) or PBS (VEH) in the BLA immediately after a single 30-trial acquisition session. Twenty-four hours later, avoidance retention was tested in an identical session. Results indicated that scopolamine in the BLA did not affect TWAA performance measured by the number of avoidance responses. Experiment 2 was conducted to test whether such a negative outcome might be due to the occurrence of overtraining during acquisition, which may indeed have a protective effect against scopolamine-induced memory deficits. In this experiment, rats were infused with scopolamine in the BLA immediately after a brief 10-trial acquisition session and tested 24 h later in a 30-trial retention session. The SCOP group showed significantly more avoidances and inter-trial crossings in the retention session than the VEH rats. Together, these results reveal that mRs blockade in the BLA does not disrupt TWAA consolidation and may even enhance avoidance performance when infused after a low number of acquisition trials. Performance factors, such as locomotor activity in the shuttle-box, may account, at least in part, for the facilitative effects of muscarinic antagonism in the BLA.
Collapse
|
17
|
Kadar E, Aldavert-Vera L, Huguet G, Costa-Miserachs D, Morgado-Bernal I, Segura-Torres P. Intracranial self-stimulation induces expression of learning and memory-related genes in rat amygdala. GENES BRAIN AND BEHAVIOR 2010; 10:69-77. [DOI: 10.1111/j.1601-183x.2010.00609.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Gomi H, Sassa T, Thompson RF, Itohara S. Involvement of cyclin-dependent kinase-like 2 in cognitive function required for contextual and spatial learning in mice. Front Behav Neurosci 2010; 4:17. [PMID: 20428496 PMCID: PMC2859807 DOI: 10.3389/fnbeh.2010.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 03/29/2010] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase-like 2 (Cdkl2) is a cdc2-related serine/threonine protein kinase that is postnatally expressed in various brain regions, including the cerebral cortex, entorhinal cortex, hippocampus, amygdala, and dorsal thalamus. The extremely high Cdkl2 expression in these regions suggests that it has a role in cognition and emotion. Recent genetic studies indicate that mutations of Cdkl family kinases are associated with neurodevelopmental and neuropsychiatric disorders in humans. To elucidate the physiologic role of Cdkl2, we behaviorally analyzed Cdkl2(LacZ/LacZ) mice lacking Cdkl2. Cdkl2(LacZ/LacZ) mice had reduced latencies to enter the dark compartment after electric footshock in an inhibitory avoidance task and attenuated contextual fear responses when exposed to mild training conditions. Hippocampal spatial learning in the Morris water maze was slightly anomalous with mice exhibiting an abnormal swimming pattern. The aversive response in a two-way avoidance task was slightly, but not significantly, enhanced. On the other hand, Cdkl2(LacZ/LacZ) mice did not exhibit altered sensitivity to aversive stimuli, such as electric footshock and heat, or deficits in the elevated plus maze or rotating rod test. These findings suggest that Cdkl2 is involved in cognitive function and provide in vivo evidence for the function of Cdkl family kinases expressed in terminally differentiated neurons in mice.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University Maebashi, Japan
| | | | | | | |
Collapse
|