1
|
Green DGJ, Westwood DJ, Kim J, Best LM, Kish SJ, Tyndale RF, McCluskey T, Lobaugh NJ, Boileau I. Fatty acid amide hydrolase levels in brain linked with threat-related amygdala activation. NEUROIMAGE. REPORTS 2022; 2:100094. [PMID: 37235067 PMCID: PMC10206405 DOI: 10.1016/j.ynirp.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 05/28/2023]
Abstract
Background Preclinical evidence suggests that increasing levels of the major endocannabinoid anandamide decreases anxiety and fear responses potentially through its effects in the amygdala. Here we used neuroimaging to test the hypothesis that lower fatty acid amide hydrolase (FAAH), the main catabolic enzyme for anandamide, is associated with a blunted amygdala response to threat. Methods Twenty-eight healthy participants completed a positron emission tomography (PET) scan with the radiotracer for FAAH, [11C]CURB, as well as a block-design functional magnetic resonance imaging session during which angry and fearful faces meant to activate the amygdala were presented. Results [11C]CURB binding in the amygdala as well as in the medial prefrontal cortex, cingulate and hippocampus correlated positively with blood-oxygen-level-dependent (BOLD) signal during processing of angry and fearful faces (pFWE < 0.05). Conclusion Our finding that lower levels of FAAH in amygdala, medial prefrontal cortex, cingulate and hippocampus was associated with a dampened amygdala response to a threatening social cue aligns with preclinical and neuroimaging studies in humans and suggests the involvement of FAAH in modulating stress and anxiety in humans. The current neuroimaging study also lends support for the potential use of FAAH inhibitors to control amygdala hyperactivity, which is known to be involved in the pathophysiology of anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Duncan GJ. Green
- Addiction Imaging Research Group, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Jinhee Kim
- Departments of Psychiatry, Canada
- Department of Psychology, Korea University, Republic of Korea
| | - Laura M. Best
- Addiction Imaging Research Group, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Stephen J. Kish
- Human Brain Lab, Canada
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Departments of Psychiatry, Canada
- Pharmacology & Toxicology, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Canada
- Departments of Psychiatry, Canada
- Pharmacology & Toxicology, Canada
| | - Tina McCluskey
- Human Brain Lab, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Nancy J. Lobaugh
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Canada
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Departments of Psychiatry, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Endocannabinoid interactions in the regulation of acquisition of contextual conditioned fear. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:84-91. [PMID: 30458201 DOI: 10.1016/j.pnpbp.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/23/2022]
Abstract
Endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were shown to be involved in the basis of trauma-induced behavioral changes, particularly contextual conditioned fear, however, their ligand-specific effects and possible interactions are poorly understood. Here we assessed specific eCB effects and interactions on acquisition of contextual conditioned fear employing electric footshocks in a rat model. We selectively increased eCB levels by pharmacological blockade of the degrading enzymes of AEA by URB597 and 2-AG by JZL184 before traumatization either systemically or locally in relevant brain areas, the prelimbic cortex (PrL), ventral hippocampus (vHC) and basolateral amygdala (BLA). Following traumatization, a series of contextual reminders were conducted during which conditioned fear was assessed. While systemic URB597-treatment during traumatization only slightly enhanced the acquisition of contextual conditioned fear, administration of the compound in the PrL and vHC led to the acquisition of stable, lasting conditioned fear, resistant to extinction. These effects of URB597 were blocked by simultaneous administration of JZL184. Similar treatment effects did not occur in the BLA. Treatment effects were not secondary to alterations in locomotor activity or nociception. Our findings suggest that AEA and 2-AG functionally interact in the regulation of acquisition of contextual conditioned fear. AEA signaling in the PrL and vHC is a crucial promoter of fear acquisition while 2-AG potentially modulates this effect. The lack of eCB effects in the BLA suggests functional specificity of eCBs at distinct brain sites.
Collapse
|
3
|
Endocannabinoid signaling and memory dynamics: A synaptic perspective. Neurobiol Learn Mem 2017; 138:62-77. [DOI: 10.1016/j.nlm.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023]
|
4
|
Leão AH, Medeiros AM, Apolinário GK, Cabral A, Ribeiro AM, Barbosa FF, Silva RH. Hippocampal-dependent memory in the plus-maze discriminative avoidance task: The role of spatial cues and CA1 activity. Behav Brain Res 2016; 304:24-33. [DOI: 10.1016/j.bbr.2016.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/28/2016] [Accepted: 02/08/2016] [Indexed: 11/25/2022]
|
5
|
Aliczki M, Barna I, Till I, Baranyi M, Sperlagh B, Goldberg SR, Haller J. The effects anandamide signaling in the prelimbic cortex and basolateral amygdala on coping with environmental stimuli in rats. Psychopharmacology (Berl) 2016; 233:1889-99. [PMID: 26809457 DOI: 10.1007/s00213-016-4219-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023]
Abstract
RATIONALE Several lines of recent evidence suggest that endocannabinoids affect behavior by influencing the general patterns of challenge responding. OBJECTIVES Here, we investigated the brain mechanisms underlying this phenomenon in rats. METHODS The anandamide hydrolysis inhibitor URB597 was condensed into the tip of stainless steel cannulae, which were chronically implanted slightly above the prelimbic cortex (PRL) or the basolateral amygdala (BLA), two important regions of coping and endocannabinoid action. Thereafter, we investigated behavioral responsiveness to ambient light level in the elevated plus-maze and conditioned fear tests. RESULTS URB597 concentration was ~30 μg/mg protein in target areas; local brain anandamide levels increased threefold, without significant changes in 2-arachidonoylglycerol. High levels of illumination halved the time spent by controls in the open arms of the plus-maze. No similar decrease was observed in rats with URB597 implants in the PRL. High light decreased conditioned fear by 30 % in controls, but not in rats with prelimbic URB597 implants. Unresponsiveness to environmental challenges was not attributable to the anxiolytic effects of anandamide enhancement, as implants induced paradoxical anxiogenic-like effects under low light, which could be explained by effects on stimulus responsiveness rather than by effects on anxiety. URB597 implants targeting the BLA did not affect stimulus responsiveness. CONCLUSIONS Our findings show that elevated prelimbic anandamide signaling leads to less environment-dependent (more autonomous) behavioral responses to challenges, which is an attribute of active coping styles. These findings are discussed in light of two emerging concepts of endocannabinoid roles, particularly "emotional homeostasis" and "active coping."
Collapse
Affiliation(s)
- Mano Aliczki
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Istvan Barna
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Ibolya Till
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Maria Baranyi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jozsef Haller
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary.
| |
Collapse
|
6
|
Diazepam effects on aversive memory retrieval and extinction: Role of anxiety levels. Pharmacol Biochem Behav 2016; 141:42-9. [DOI: 10.1016/j.pbb.2015.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 11/22/2022]
|
7
|
Simone JJ, Malivoire BL, McCormick CM. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats. Neuroscience 2015; 306:123-37. [PMID: 26311003 DOI: 10.1016/j.neuroscience.2015.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/29/2015] [Accepted: 08/15/2015] [Indexed: 12/16/2022]
Abstract
There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol.
Collapse
Affiliation(s)
- J J Simone
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | - B L Malivoire
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | - C M McCormick
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
8
|
Ren Y, Wang J, Xu PB, Xu YJ, Miao CH. Systemic or intra-amygdala infusion of an endocannabinoid CB1 receptor antagonist AM251 blocked propofol-induced anterograde amnesia. Neurosci Lett 2014; 584:287-91. [PMID: 25445359 DOI: 10.1016/j.neulet.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Propofol is well-known for its anterograde amnesic actions. However, a recent experiment showed that propofol can also produce retrograde memory enhancement effects via an interaction with the endocannabinoid CB1 system. Therefore, the authors hypothesized that the regulating effect of propofol on the endocannabinoid CB1 system might also decrease the anterograde amnesic effect of propofol under some conditions, which might be a risk factor for intraoperative awareness. Since, the basolateral amygdala (BLA) has been confirmed to mediate propofol-induced anterograde amnesia and the BLA contains a high concentration of CB1 receptors, the authors investigated whether and how the endocannabinoid system, particularly the CB1 receptor within BLA, influences propofol-induced anterograde amnesia. Male Sprague-Dawley rats trained with inhibitory avoidance (IA) were systematically pre-trained using a memory-impairing dose of propofol (25 mg/kg). Before propofol administration, rats received an intraperitoneal injection of a CB1 receptor antagonist AM251 (1 mg/kg or 2 mg/kg) or a bilateral intra-BLA injection of AM251 (0.6 ng or 6 ng per 0.5 μl). Twenty-four hours after IA training, the IA retention latency was tested. It was found that systemic or intra-BLA injection of a non-regulating dose of AM251 (2 mg/kg or 6 ng per 0.5 μl, respectively) blocked the memory-impairing effect of propofol. These results indicate that the anterograde amnesic effect of propofol is mediated, in part, by activation of the CB1 cannabinoid receptors in the BLA.
Collapse
Affiliation(s)
- Y Ren
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - J Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - P B Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Y J Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - C H Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
9
|
de Macêdo Medeiros A, Izídio GS, Sousa DS, Macedo PT, Silva AF, Shiramizu VKM, Cabral A, Ribeiro AM, Silva RH. Estrogen levels modify scopolamine-induced amnesia in gonadally intact rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:99-108. [PMID: 24657885 DOI: 10.1016/j.pnpbp.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/23/2022]
Abstract
Previous studies suggested that estrogen plays a role in cognitive function by modulating the cholinergic transmission. However, most of the studies dealing with this subject have been conducted using ovariectomized rats. In the present study we evaluated the effects of physiological and supra-physiological variation of estrogen levels on scopolamine-induced amnesia in gonadally intact female rats. We used the plus-maze discriminative avoidance task (PMDAT) in order to evaluate anxiety levels and motor activity concomitantly to the memory performance. In experiment 1, female Wistar rats in each estrous cycle phase received scopolamine (1 mg/kg) or saline i.p. 20 min before the training session in the PMDAT. In experiment 2, rats in diestrus received estradiol valerate (1 mg/kg) or sesame oil i.m., and scopolamine (1 mg/kg) or saline i.p., 45 min and 20 min before the training, respectively. In experiment 3, rats in diestrus received scopolamine (1 mg/kg) or saline i.p. 20 min before the training, and estradiol valerate (1 mg/kg) or sesame oil i.m. immediately after the training session. In all experiments, a test session was performed 24 h later. The main results showed that: (1) scopolamine impaired retrieval and induced anxiolytic and hyperlocomotor effects in all experiments; (2) this cholinergic antagonist impaired acquisition only in animals in diestrus; (3) acute administration of estradiol valerate prevented the learning impairment induced by scopolamine and (4) interfered with memory consolidation process. The results suggest that endogenous variations in estrogen levels across the estrous cycle modulate some aspects of memory mediated by the cholinergic system. Indeed, specifically in diestrus, a stage with low estrogen levels, the impairment produced by scopolamine on the acquisition was counteracted by exogenous administration of the hormone, whereas the posttraining treatment potentiated the negative effects of scopolamine during the consolidation phase of memory.
Collapse
Affiliation(s)
| | - Geison Souza Izídio
- Behavioral Genetics Laboratory, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Diego Silveira Sousa
- Memory Studies Laboratory, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Alicia Cabral
- Memory Studies Laboratory, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Regina Helena Silva
- Memory Studies Laboratory, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
10
|
Yu S, Levi L, Casadesus G, Kunos G, Noy N. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain. J Biol Chem 2014; 289:12748-58. [PMID: 24644281 DOI: 10.1074/jbc.m114.559062] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endocannabinoids modulate multiple behaviors, including learning and memory. We show that the endocannabinoid anandamide (AEA) can alter neuronal cell function both through its established role in activation of the G-protein-coupled receptor CB1, and by serving as a precursor for a potent agonist of the nuclear receptor PPARβ/δ, in turn up-regulating multiple cognition-associated genes. We show further that the fatty acid-binding protein FABP5 controls both of these functions in vivo. FABP5 both promotes the hydrolysis of AEA into arachidonic acid and thus reduces brain endocannabinoid levels, and directly shuttles arachidonic acid to the nucleus where it delivers it to PPARβ/δ, enabling its activation. In accordance, ablation of FABP5 in mice results in excess accumulation of AEA, abolishes PPARβ/δ activation in the brain, and markedly impairs hippocampus-based learning and memory. The data indicate that, by controlling anandamide disposition and activities, FABP5 plays a key role in regulating hippocampal cognitive function.
Collapse
|
11
|
Luchicchi A, Pistis M. Anandamide and 2-arachidonoylglycerol: Pharmacological Properties, Functional Features, and Emerging Specificities of the Two Major Endocannabinoids. Mol Neurobiol 2012; 46:374-92. [DOI: 10.1007/s12035-012-8299-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/03/2012] [Indexed: 12/18/2022]
|
12
|
Melo TG, Izídio GS, Ferreira LS, Sousa DS, Macedo PT, Cabral A, Ribeiro AM, Silva RH. Antidepressants differentially modify the extinction of an aversive memory task in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:33-40. [PMID: 22310225 DOI: 10.1016/j.pnpbp.2012.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 12/19/2022]
Abstract
Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in the extinction of aversive memories are believed to play a role in these psychopathologies. We have recently verified that female rats present low levels of extinction when submitted to the plus-maze discriminative avoidance task. In the present study, female rats were treated long term with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and subjected to the plus-maze discriminative avoidance task to evaluate learning, memory, extinction and anxiety-related behaviors as well as behavioral despair in the forced swimming test. All groups learned the task and exhibited retrieval. Chronic treatment with fluoxetine (but not with the other antidepressants tested) increased extinction of the discriminative task. In the forced swimming test, the animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, fluoxetine potentiated extinction, while both fluoxetine and mirtazapine were effective in ameliorating depressive-like behavior in the forced swimming test, suggesting a possible dissociation between the effects on mood and the extinction of aversive memories in female rats.
Collapse
Affiliation(s)
- Thieza G Melo
- Memory Studies Laboratory, Physiology Department, Federal University of Rio Grande of Norte, Natal, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Aydin C, Oztan O, Isgor C. Long-term effects of juvenile nicotine exposure on abstinence-related social anxiety-like behavior and amygdalar cannabinoid receptor 1 (CB1R) mRNA expression in the novelty-seeking phenotype. Behav Brain Res 2011; 228:236-9. [PMID: 22119710 DOI: 10.1016/j.bbr.2011.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
A rat model of novelty-seeking phenotype predicts vulnerability to nicotine relapse where locomotor reactivity to novelty is used to rank high (HR) versus low (LR) responders. Present study investigates implication of cannabinoid receptor 1 (CB1R) in the basolateral (BLA) and the central (CeA) nuclei of amygdala in behaviorally sensitizing effects of nicotine and accompanying social anxiety following juvenile nicotine training and a 1- or 3-wk injection-free period in the novelty-seeking phenotype. Sprague-Dawley rats were phenotype screened, and received four, saline (1 ml/kg; s.c) or nicotine (0.35 mg/kg; s.c) injections, followed by a 1- or 3-wk injection-free period. Subsequently, animals were challenged with a low dose of nicotine (0.1 mg/kg; s.c.), subjected to the social interaction test and sacrificed. In situ hybridization histochemistry was used to assess CB1R messenger RNA (mRNA) levels in the amygdala. Nicotine pre-trained HRs displayed expression of locomotor sensitization to nicotine challenge along with enhanced social anxiety compared to saline pre-trained controls following a 1- or 3-wk injection-free period. HR-specific behavioral effects were accompanied by decreased CB1R mRNA levels in the CeA and the BLA following a 1-wk injection-free period. Decreased CB1R mRNA levels in both compartments of the amygdala were also observed following nicotine challenge in saline pre-trained HRs after a 3-wk injection-free period compared to HRs after a 1-wk injection-free period. These findings show robust, long-lasting expression of behavioral sensitization to nicotine in HRs associated with changes in amygdalar CB1R mRNA as a potential substrate for abstinence-related anxiety.
Collapse
Affiliation(s)
- Cigdem Aydin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | |
Collapse
|