1
|
Aleman-Zapata A, Capitan MM, Samanta A, Özsezer P, Agarwal K, Adam T, Rayan A, Genzel L. Differential contributions of CA3 and entorhinal cortex inputs to ripple patterns in the hippocampus. iScience 2025; 28:111782. [PMID: 39967864 PMCID: PMC11834075 DOI: 10.1016/j.isci.2025.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
Hippocampal ripples project reactivated memories to many brain areas, and recently it has been proposed that different types of ripples exist whose information content is influenced by different regions. Utilizing a threshold-based approach, our study differentiated distinct ripple types in rats, clarifying the contributions of intra-hippocampal (CA3) and cortical (mEC) regions to these events. The findings reveal that different ripple types differ in the relative contributions of both regions to their generation, and interestingly cannabidiol ingestion primarily influences the CA3's input to the CA1, resulting in an increased occurrence of short ripples predominantly induced by cortical (mEC) activity and a corresponding decrease in long, intra-hippocampal sharp-wave ripples. This study highlights the critical interplay between the CA3 and entorhinal cortex dynamics in shaping the characteristics of hippocampal ripples.
Collapse
Affiliation(s)
- Adrian Aleman-Zapata
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Melisa Maidana Capitan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Anumita Samanta
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Pelin Özsezer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Kopal Agarwal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Tugdual Adam
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Abdelrahman Rayan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| |
Collapse
|
2
|
Samanta A, Aleman-Zapata A, Agarwal K, Özsezer P, Alonso A, van der Meij J, Rayan A, Navarro-Lobato I, Genzel L. CBD lengthens sleep but shortens ripples and leads to intact simple but worse cumulative memory. iScience 2023; 26:108327. [PMID: 38026151 PMCID: PMC10656268 DOI: 10.1016/j.isci.2023.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cannabidiol (CBD) is on the rise as over-the-counter medication to treat sleep disturbances, anxiety, pain, and epilepsy due to its action on the excitatory/inhibitory balance in the brain. However, it remains unclear if CBD also leads to adverse effects on memory via changes of sleep macro- and microarchitecture. To investigate the effect of CBD on sleep and memory consolidation, we performed two experiments using the object space task testing for both simple and cumulative memory in rats. We show that oral CBD administration extended the sleep period but changed the properties of rest and non-REM sleep oscillations (delta, spindle, ripples). Specifically, CBD also led to less long (>100 ms) ripples and, consequently, worse cumulative memory consolidation. In contrast, simple memories were not affected. In sum, we can confirm the beneficial effect of CBD on sleep; however, this comes with changes in oscillations that negatively impact memory consolidation.
Collapse
Affiliation(s)
- Anumita Samanta
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Adrian Aleman-Zapata
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Kopal Agarwal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Pelin Özsezer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Alejandra Alonso
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Jacqueline van der Meij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Abdelrahman Rayan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Irene Navarro-Lobato
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| |
Collapse
|
3
|
Alonso A, Samanta A, van der Meij J, van den Brand L, Negwer M, Navarro Lobato I, Genzel L. Defensive and offensive behaviours in a Kleefstra syndrome mouse model. Anim Cogn 2023; 26:1131-1140. [PMID: 36877418 PMCID: PMC10345049 DOI: 10.1007/s10071-023-01757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
Kleefstra syndrome in humans is characterized by a general delay in development, intellectual disability and autistic features. The mouse model of this disease (Ehmt1±) expresses anxiety, autistic-like traits, and aberrant social interactions with non-cagemates. To investigate how Ehmt1± mice behave with unfamiliar conspecifics, we allowed adult, male animals to freely interact for 10 min in a neutral, novel environment within a host-visitor setting. In trials where the Ehmt1± mice were hosts, there were defensive and offensive behaviors. Our key finding was that Ehmt1± mice displayed defensive postures, attacking and biting; in contrast, wild-type (WT) interacting with other WT did not enact such behaviors. Further, if there was a fight between an Ehmt1± and a WT mouse, the Ehmt1± animal was the most aggressive and always initiated these behaviors.
Collapse
Affiliation(s)
- Alejandra Alonso
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Anumita Samanta
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Jacqueline van der Meij
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Liz van den Brand
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Moritz Negwer
- Donders Institute for Brain, Cognition and Behaviour, RadboudUMC, Nijmegen, The Netherlands
| | - Irene Navarro Lobato
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Lisa Genzel
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|