1
|
Černotová D, Hrůzová K, Touš J, Janča R, Stuchlík A, Levčík D, Svoboda J. Early social deficits in TgF344-AD rats are accompanied by sex-specific parvalbumin-positive interneuron reduction and altered brain oscillations in the hippocampal CA2. Neurobiol Dis 2025; 208:106875. [PMID: 40097074 DOI: 10.1016/j.nbd.2025.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025] Open
Abstract
Social withdrawal and deficits in social cognition are hallmarks of Alzheimer's disease (AD). While early deficits in social behavior and memory have been documented in mouse AD models, they remain understudied in rat models. Early-stage AD is accompanied by dysfunction of parvalbumin-positive (PV+) interneurons, implicating their potential connection to early symptoms. In this study, we employed a 5-trial social memory task to investigate early deficits in social cognition in 6-month-old TgF344-AD male and female rats. We counted the number of PV+ interneurons and recorded local field potentials during social interactions in the hippocampal CA2 - a region critical for social information processing. Our results show decreased social interest and novelty preference in TgF344-AD male and female rats. However, reduced PV+ interneuron numbers were observed only in female rats and specific to the CA2 area. The electrophysiological recordings revealed reduced theta-gamma phase-amplitude coupling in the CA2 during direct social interactions. We conclude that deficits in social cognition accompany early-stage AD in TgF344-AD rats and are potentially linked to PV+ interneuron and brain oscillatory dysfunction in the CA2 region of the hippocampus.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Jan Touš
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Radek Janča
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| |
Collapse
|
2
|
Shivakumar AB, Mehak SF, Jijimon F, Gangadharan G. Extrahippocampal Contributions to Social Memory: The Role of Septal Nuclei. Biol Psychiatry 2024; 96:835-847. [PMID: 38718881 DOI: 10.1016/j.biopsych.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
Social memory, the ability to recognize and remember individuals within a social group, is crucial for social interactions and relationships. Deficits in social memory have been linked to several neuropsychiatric and neurodegenerative disorders. The hippocampus, especially the circuit that links dorsal CA2 and ventral CA1 neurons, is considered a neural substrate for social memory formation. Recent studies have provided compelling evidence of extrahippocampal contributions to social memory. The septal nuclei, including the medial and lateral septum, make up a basal forebrain region that shares bidirectional neuronal connections with the hippocampus and has recently been identified as critical for social memory. The focus of our review is the neural circuit mechanisms that underlie social memory, with a special emphasis on the septum. We also discuss the social memory dysfunction associated with neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Feyba Jijimon
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Kietzman HW, Trinoskey-Rice G, Seo EH, Guo J, Gourley SL. Neuronal Ensembles in the Amygdala Allow Social Information to Motivate Later Decisions. J Neurosci 2024; 44:e1848232024. [PMID: 38499360 PMCID: PMC11026342 DOI: 10.1523/jneurosci.1848-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Social experiences carry tremendous weight in our decision-making, even when social partners are not present. To determine mechanisms, we trained female mice to respond for two food reinforcers. Then, one food was paired with a novel conspecific. Mice later favored the conspecific-associated food, even in the absence of the conspecific. Chemogenetically silencing projections from the prelimbic subregion (PL) of the medial prefrontal cortex to the basolateral amygdala (BLA) obstructed this preference while leaving social discrimination intact, indicating that these projections are necessary for socially driven choice. Further, mice that performed the task had greater densities of dendritic spines on excitatory BLA neurons relative to mice that did not. We next induced chemogenetic receptors in cells active during social interactions-when mice were encoding information that impacted later behavior. BLA neurons stimulated by social experience were necessary for mice to later favor rewards associated with social conspecifics but not make other choices. This profile contrasted with that of PL neurons stimulated by social experience, which were necessary for choice behavior in social and nonsocial contexts alike. The PL may convey a generalized signal allowing mice to favor particular rewards, while units in the BLA process more specialized information, together supporting choice motivated by social information.
Collapse
Affiliation(s)
- Henry W Kietzman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Esther H Seo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
4
|
Ferrara NC, Trask S, Padival M, Rosenkranz JA. Maturation of a cortical-amygdala circuit limits sociability in male rats. Cereb Cortex 2023; 33:8391-8404. [PMID: 37032624 PMCID: PMC10321102 DOI: 10.1093/cercor/bhad124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023] Open
Abstract
Prefrontal cortical maturation coincides with adolescent transitions in social engagement, suggesting that it influences social development. The anterior cingulate cortex (ACC) is important for social interaction, including ACC outputs to the basolateral amygdala (BLA). However, little is known about ACC-BLA sensitivity to the social environment and if this changes during maturation. Here, we used brief (2-hour) isolation to test the immediate impact of changing the social environment on the ACC-BLA circuit and subsequent shifts in social behavior of adolescent and adult rats. We found that optogenetic inhibition of the ACC during brief isolation reduced isolation-driven facilitation of social interaction across ages. Isolation increased activity of ACC-BLA neurons across ages, but altered the influence of ACC on BLA activity in an age-dependent manner. Isolation reduced the inhibitory impact of ACC stimulation on BLA neurons in a frequency-dependent manner in adults, but uniformly suppressed ACC-driven BLA activity in adolescents. This work identifies isolation-driven alterations in an ACC-BLA circuit, and the ACC itself as an essential region sensitive to social environment and regulates its impact on social behavior in both adults and adolescents.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, 703 3rd Street, West Lafayette, IN, 47907, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Jeremy Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| |
Collapse
|
5
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526780. [PMID: 36778382 PMCID: PMC9915682 DOI: 10.1101/2023.02.02.526780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Nathaniel S Rieger
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget H Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget N Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
6
|
Wassum KM. Amygdala-cortical collaboration in reward learning and decision making. eLife 2022; 11:e80926. [PMID: 36062909 PMCID: PMC9444241 DOI: 10.7554/elife.80926] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
7
|
Vázquez D, Schneider KN, Roesch MR. Neural signals implicated in the processing of appetitive and aversive events in social and non-social contexts. Front Syst Neurosci 2022; 16:926388. [PMID: 35993086 PMCID: PMC9381696 DOI: 10.3389/fnsys.2022.926388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In 2014, we participated in a special issue of Frontiers examining the neural processing of appetitive and aversive events. Specifically, we reviewed brain areas that contribute to the encoding of prediction errors and value versus salience, attention and motivation. Further, we described how we disambiguated these cognitive processes and their neural substrates by using paradigms that incorporate both appetitive and aversive stimuli. We described a circuit in which the orbitofrontal cortex (OFC) signals expected value and the basolateral amygdala (BLA) encodes the salience and valence of both appetitive and aversive events. This information is integrated by the nucleus accumbens (NAc) and dopaminergic (DA) signaling in order to generate prediction and prediction error signals, which guide decision-making and learning via the dorsal striatum (DS). Lastly, the anterior cingulate cortex (ACC) is monitoring actions and outcomes, and signals the need to engage attentional control in order to optimize behavioral output. Here, we expand upon this framework, and review our recent work in which within-task manipulations of both appetitive and aversive stimuli allow us to uncover the neural processes that contribute to the detection of outcomes delivered to a conspecific and behaviors in social contexts. Specifically, we discuss the involvement of single-unit firing in the ACC and DA signals in the NAc during the processing of appetitive and aversive events in both social and non-social contexts.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Kevin N. Schneider
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|