1
|
Weissbach T, Hausman-Kedem M, Yanay Z, Meyer R, Bar-Yosef O, Leibovitch L, Berkenstadt M, Chorin O, Shani H, Massarwa A, Achiron R, Weisz B, Sharon R, Mazaki-Tovi S, Kassif E. Congenital hypotonia: systematic approach for prenatal detection. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:94-105. [PMID: 36779229 DOI: 10.1002/uog.26178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Congenital hypotonic conditions are rare and heterogeneous, and some are severely debilitating or lethal. Contrary to its prominent postnatal manifestation, the prenatal presentation of hypotonia is frequently subtle, inhibiting prenatal detection. We aimed to characterize the prenatal sonographic manifestation of congenital hypotonia throughout pregnancy, evaluate the yield of diagnostic tests and propose diagnostic models to increase its prenatal detection. METHODS This was a retrospective observational study of singleton pregnancies with congenital hypotonia, diagnosed either prenatally or immediately after birth, at a single tertiary center between the years 2012 and 2020. Prenatally, hypotonia was diagnosed if a fetus showed sonographic or clinical signs suggestive of hypotonia and had a confirmed underlying genetic condition, or in the absence of a known genetic abnormality if the fetus exhibited multiple prominent signs suggestive of hypotonia. Postnatally, it was diagnosed in neonates displaying reduced muscle tone leading to reduced spontaneous movement, reduced swallowing or feeding difficulty. We reviewed the medical records of pregnant patients carrying fetuses subsequently diagnosed with congenital hypotonia and assessed the yield of ultrasound scans, fetal magnetic resonance imaging, computed tomography and genetic tests. The detection rate of sonographic signs suggesting fetal hypotonia was calculated. The prevalence of non-specific signs, including polyhydramnios, persistent breech presentation, intrauterine growth restriction and maternal perception of reduced fetal movement, were compared between the study group and the local liveborn singleton population. Potential detection rates of different theoretical semiotic diagnostic models, differing in the threshold for referral for a targeted scan, were assessed based on the cohort's data. RESULTS The study group comprised 26 cases of congenital hypotonia, of which 10 (38.5%) were diagnosed prenatally, and the controls included 95 105 singleton live births, giving a prevalence of congenital hypotonia of 1:3658. Nuchal translucency thickness and the early anomaly scan at 13-17 weeks were normal in all 22 and 23 cases, respectively, in which this was performed. The mid-trimester scan performed at 19-25 weeks was abnormal in four of 24 (16.7%) cases. The overall prenatal detection rate of congenital hypotonic conditions in our cohort was 38.5%. Only cases which underwent a targeted scan were detected and, among the 16 cases which underwent this scan, the prenatal detection rate was 62.5% compared with 0% in pregnancies that did not undergo this scan (P = 0.003). An abnormal genetic diagnosis was obtained in 21 (80.8%) cases using the following modalities: chromosomal microarray analysis (CMA) in two (9.5%), whole-exome sequencing (WES) in 14 (66.7%) and methylation analysis in five (23.8%). CMA was abnormal in 8% (2/25) of the cases and WES detected a causative genetic mutation in 87.5% (14/16) of the cases in which these were performed. Comparison of non-specific signs in the study group with those in the local singleton population showed that hypotonic fetuses had significantly more polyhydramnios (64.0% vs 3.0%, P < 0.0001), persistent breech presentation (58.3% vs 4.2%, P < 0.0001), intrauterine growth restriction (30.8% vs 3.0%, P < 0.0001) and maternal perception of reduced fetal movement (32.0% vs 4.7%, P < 0.0001). Prenatally, the most commonly detected signs supporting a diagnosis of hypotonia were structural anomaly (62.5%, 10/16), reduced fetal movement (46.7%, 7/15), joint contractures (46.7%, 7/15) and undescended testes ≥ 30 weeks (42.9%, 3/7 males). Proposed diagnostic strategies that involved performing a targeted scan for a single non-specific ultrasound sign or two such signs, and then carrying out a comprehensive genetic evaluation for any additional sign, offered theoretical detection rates in our cohort of 88.5% and 57.7%, respectively. CONCLUSIONS Congenital hypotonic conditions are rare and infrequently detected prenatally. Sonographic signs are visible from the late second trimester. A targeted scan increases prenatal detection significantly. Comprehensive genetic testing, especially WES, is the cornerstone of diagnosis in congenital hypotonia. Theoretical diagnostic models which may increase prenatal detection are provided. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- T Weissbach
- Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Hausman-Kedem
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Z Yanay
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Schneider Children's Medical Center, Petach Tikva, Israel
| | - R Meyer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
| | - O Bar-Yosef
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Neurology, Safra Children's Hospital, Sheba, Tel Hashomer, Israel
| | - L Leibovitch
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neonatal Intensive Care Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - M Berkenstadt
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Danek Institute of Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - O Chorin
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Danek Institute of Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - H Shani
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Danek Institute of Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - A Massarwa
- Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - R Achiron
- Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - B Weisz
- Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - R Sharon
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - S Mazaki-Tovi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
| | - E Kassif
- Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
The Lower Limb Movements of the Fetus in Uterus: A Narrative Review. Appl Bionics Biomech 2023; 2023:4324889. [PMID: 36726392 PMCID: PMC9886482 DOI: 10.1155/2023/4324889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The fetus movements play an important role in fetal well-being. With the continuous advancement of real-time scanning machines, it is feasible to observe the fetus movement in detail. The characteristics of fetal lower limb movements in prenatal examination have not been systematically investigated. This review proposes the patterns of fetal lower limb movements, the maternal influence on fetal lower limb movements, and the application of fetal lower limb movements for the diagnosis of prenatal diseases. A systematic search of literature on the lower limb movements of the fetus in uterus was performed in the databases, namely, Web of Science and Scopus. Thirty-four publications were selected. This review demonstrates that isolated fetal lower limb movements are rare and always accompanied with the movements of other body segments. Detection of the presence of fetal leg movements seems to be of no diagnostic value for fetuses with prenatal diseases. The isolated lower limb movement was statistically significant different between fetuses of low- and high-risk pregnant women. The coordinated movements of the fetal lower limbs and other parts should be considered when analyzing fetal movements in the future study.
Collapse
|
3
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
4
|
Tizzano EF, Zafeiriou D. Prenatal aspects in spinal muscular atrophy: From early detection to early presymptomatic intervention. Eur J Paediatr Neurol 2018; 22:944-950. [PMID: 30219357 DOI: 10.1016/j.ejpn.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/22/2023]
Abstract
With the recent advances in spinal muscular atrophy therapies, the complete scenario of standard of care and following up is changing not only in the clinical field with new phenotypes emerging but also with new expectations for patients, caregivers and health providers. The actual evidence indicates that early intervention and treatment is crucial for better response and prognosis. Knowledge of the prenatal and pre-symptomatic postnatal stages of the disease are becoming essential to consider the opportunities of timely diagnosis and to decide the earliest therapeutic intervention.
Collapse
Affiliation(s)
- Eduardo F Tizzano
- Department of Clinical and Molecular Genetics and Rare Diseases Unit and Medicine Genetics Group, VHIR, Hospital Valle Hebron, Barcelona, Spain; CIBERER, Barcelona, Spain.
| | - Dimitrios Zafeiriou
- 1st Department of Pediatrics, "Hippokratio" General Hospital, Aristotle University, Thessaloniki, Greece.
| |
Collapse
|
5
|
Grotto S, Cuisset JM, Marret S, Drunat S, Faure P, Audebert-Bellanger S, Desguerre I, Flurin V, Grebille AG, Guerrot AM, Journel H, Morin G, Plessis G, Renolleau S, Roume J, Simon-Bouy B, Touraine R, Willems M, Frébourg T, Verspyck E, Saugier-Veber P. Type 0 Spinal Muscular Atrophy: Further Delineation of Prenatal and Postnatal Features in 16 Patients. J Neuromuscul Dis 2016; 3:487-495. [DOI: 10.3233/jnd-160177] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sarah Grotto
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Jean-Marie Cuisset
- Department of Pediatric Neurology, Roger Salengro Hospital, Lille Regional University Hospital, Lille, France
| | - Stéphane Marret
- Department of Pediatric Intensive Care, Rouen University Hospital, Rouen, France
- Inserm ERI 28, Institute for Research and Innovation in Biomedicine, Rouen University, France
| | - Séverine Drunat
- Department of Genetics, Robert Debre University Hospital, APHP, Paris, France
| | - Patricia Faure
- Inserm U1079, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| | | | - Isabelle Desguerre
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Vincent Flurin
- Department of Pediatric Intensive Care, Le Mans Hospital, Le Mans, France
| | - Anne-Gaëlle Grebille
- Department of Obstetrics and Gynecology, Saint-Brieuc Hospital, Saint-Brieuc, France
| | - Anne-Marie Guerrot
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Hubert Journel
- Department of Genetics, Vannes Bretagne-Atlantique Hospital, Vannes, France
| | - Gilles Morin
- Department of Genetics, Amiens University Hospital, Amiens, France
| | | | - Sylvain Renolleau
- Department of Pediatric Intensive Care, Armand-Trousseau Children’s Hospital, APHP, Paris, France
| | - Joëlle Roume
- Department of Genetics, Poissy-Saint-Germain-en-Laye Hospital, Poissy, France
| | | | - Renaud Touraine
- Department of Genetics, Saint-Etienne University Hospital, Saint-Priest-en-Jarez, France
| | - Marjolaine Willems
- Department of Genetics, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Thierry Frébourg
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
- Inserm U1079, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| | - Eric Verspyck
- Department of Obstetrics and Gynecology, Rouen University Hospital, Rouen, France
| | - Pascale Saugier-Veber
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
- Inserm U1079, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| |
Collapse
|
6
|
Medrano S, Monges S, Gravina LP, Alías L, Mozzoni J, Aráoz HV, Bernal S, Moresco A, Chertkoff L, Tizzano E. Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina. Eur J Paediatr Neurol 2016; 20:910-917. [PMID: 27510309 DOI: 10.1016/j.ejpn.2016.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND/PURPOSE Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder, considered one of the leading causes of infant mortality. It is caused by mutations in the SMN1 gene. A highly homologous copy of this gene named SMN2 and other neighbouring genes, SERF1A and NAIP, are considered phenotypic modifiers of the disease. In recent years, notable advances have been made in SMA research regarding evaluation, prognosis, and therapeutic options. Thus, genotype-phenotype studies in SMA are important to stratify patients for motor function tests and for envisaged clinical trials. The aim of this study was to provide clinical and molecular data of a series of Argentinean children with SMA to establish a comprehensive genotype-phenotype correlation. METHODS 144 Argentinean children with SMA (56 children with type I, 58 with type II, and 30 with type III) were evaluated. The copy number of SMN2, SERF1A, and NAIP genes was established using MLPA (Multiplex Ligation-dependent Probe Amplification) and then correlated with the patients clinical subtypes. To improve clinical characterization we considered the initial symptoms that prompted the consultation, age of acquisition of motor abilities to independent walking and age at loss of gait. We also evaluated clinical and molecular features of sibling pairs in seven families. RESULTS A strong correlation was observed between the SMN2 copy number and SMA phenotype while SERF1A and NAIP copy number showed a moderate correlation. We observed intra- and inter-family differences among the SMA types. CONCLUSION This first genotype-phenotype correlation study in Argentinean SMA children provides data to improve patient stratification and define more adequate follow-up parameters.
Collapse
Affiliation(s)
- Sofía Medrano
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Soledad Monges
- Servicio de Neurología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Luis Pablo Gravina
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Laura Alías
- Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER U-705, Barcelona, Spain
| | - Julieta Mozzoni
- Servicio de Kinesiología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Hilda Verónica Aráoz
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Sara Bernal
- Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER U-705, Barcelona, Spain
| | - Angélica Moresco
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Lilien Chertkoff
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics, Hospital Valle Hebron, Barcelona, Spain; CIBERER U-705, Barcelona, Spain.
| |
Collapse
|
7
|
Voigt T, Neve A, Schümperli D. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy. Neuropathol Appl Neurobiol 2015; 40:416-34. [PMID: 23718187 DOI: 10.1111/nan.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/30/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022]
Abstract
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
8
|
Martínez-Hernández R, Bernal S, Also-Rallo E, Alías L, Barceló MJ, Hereu M, Esquerda JE, Tizzano EF. Synaptic defects in type I spinal muscular atrophy in human development. J Pathol 2013; 229:49-61. [PMID: 22847626 DOI: 10.1002/path.4080] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/12/2012] [Accepted: 07/22/2012] [Indexed: 01/24/2023]
Abstract
Childhood spinal muscular atrophy is an autosomal recessive neuromuscular disorder caused by alterations in the Survival Motor Neuron 1 gene that triggers degeneration of motor neurons within the spinal cord. Spinal muscular atrophy is the second most common severe hereditary disease of infancy and early childhood. In the most severe cases (type I), the disease appears in the first months of life, suggesting defects in fetal development. However, it is not yet known how motor neurons, neuromuscular junctions, and muscle interact in the neuropathology of the disease. We report the structure of presynaptic and postsynaptic apparatus of the neuromuscular junctions in control and spinal muscular atrophy prenatal and postnatal human samples. Qualitative and quantitative data from confocal and electron microscopy studies revealed changes in acetylcholine receptor clustering, abnormal preterminal accumulation of vesicles, and aberrant ultrastructure of nerve terminals in the motor endplates of prenatal type I spinal muscular atrophy samples. Fetuses predicted to develop milder type II disease had a similar appearance to controls. Postnatal muscle of type I spinal muscular atrophy patients showed persistence of the fetal subunit of acetylcholine receptors, suggesting a delay in maturation of neuromuscular junctions. We observed that pathology in the severe form of the disease starts in fetal development and that a defect in maintaining the initial innervation is an early finding of neuromuscular dysfunction. These results will improve our understanding of the spinal muscular atrophy pathogenesis and help to define targets for possible presymptomatic therapy for this disease.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Genetics, Hospital de la Santa Creu i Sant Pau and IIB Sant Pau, Avda Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med 2013; 19:40-50. [DOI: 10.1016/j.molmed.2012.11.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/23/2012] [Accepted: 11/02/2012] [Indexed: 12/16/2022]
|
10
|
Parra J, Tizzano EF. Raising obstetricians' awareness of spinal muscular atrophy: towards early detection and reproductive planning. J Matern Fetal Neonatal Med 2012; 25:2555-8. [PMID: 22712688 DOI: 10.3109/14767058.2012.703720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by degeneration of α motor neurons in the spinal cord anterior horns. This degeneration can lead to progressive atrophy of proximal muscles, weakness, respiratory failure and death in severe cases. SMA is the most common neuromuscular disease of childhood and one of the main causes of infant death, with no cure in sight. This review highlights the impact of the disease in families, summarizes genetics and ultrasound advances, discusses how obstetricians can work towards its early detection and explores the options for reproductive planning.
Collapse
Affiliation(s)
- Juan Parra
- Department of Obstetrics and Gynecology, Hospital Sant Pau, and Ciberer U-705(3), Barcelona, Spain
| | | |
Collapse
|
11
|
Abstract
Bench to bedside progress has been widely anticipated for a growing number of neurodegenerative disorders. Of these, spinal muscular atrophy (SMA) is perhaps the best poised to capitalize on advances in targeted therapeutics development over the next few years. Several laboratories have achieved compelling success in SMA animal models using sophisticated methods for targeted delivery, repair, or increased expression of the survival motor neuron protein, SMN. The clinical community is actively collaborating to identify, develop, and validate outcome measures and biomarkers in parallel with laboratory efforts. Innovative trial design and synergistic approaches to maximize proactive care in conjunction with treatment with one or more of the promising pharmacologic and biologic therapies currently in the pipeline will maximize our chances to achieve meaningful outcomes for patients. This review highlights recent promising scientific and clinical advances bringing us ever closer to effective treatment(s) for our patients with SMA.
Collapse
|
12
|
Nemec SF, Nemec U, Brugger PC, Bettelheim D, Rotmensch S, Graham JM, Rimoin DL, Prayer D. MR imaging of the fetal musculoskeletal system. Prenat Diagn 2012; 32:205-13. [DOI: 10.1002/pd.2914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefan Franz Nemec
- Medical University Vienna; Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology; Waehringer Guertel 18-20 Vienna A-1090 Austria
- Cedars Sinai Medical Center; Medical Genetics Institute, 8700 Beverly Boulevard, PACT Suite 400; 8700 Beverly Boulevard, PACT Suite 400 Los Angeles CA, 90048 90048 USA
| | - Ursula Nemec
- Medical University Vienna; Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology; Waehringer Guertel 18-20 Vienna A-1090 Austria
| | - Peter C. Brugger
- Medical University Vienna; Center of Anatomy and Cell Biology, Integrative Morphology Group; Vienna Austria
| | - Dieter Bettelheim
- Medical University Vienna; Department of Obstetrics and Gynaecology, Division of Prenatal Diagnosis and Therapy; Vienna Austria
| | - Siegfried Rotmensch
- Cedars Sinai Medical Center; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine; Los Angeles CA USA
| | - John M. Graham
- Cedars Sinai Medical Center; Medical Genetics Institute, 8700 Beverly Boulevard, PACT Suite 400; 8700 Beverly Boulevard, PACT Suite 400 Los Angeles CA, 90048 90048 USA
| | - David L. Rimoin
- Cedars Sinai Medical Center; Medical Genetics Institute, 8700 Beverly Boulevard, PACT Suite 400; 8700 Beverly Boulevard, PACT Suite 400 Los Angeles CA, 90048 90048 USA
| | - Daniela Prayer
- Medical University Vienna; Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology; Waehringer Guertel 18-20 Vienna A-1090 Austria
| |
Collapse
|
13
|
Parra J, Alias L, Also-Rallo E, Martínez-Hernández R, Senosiain R, Medina C, Alejos O, Rams N, Amenedo M, Ormo F, Jesús Barceló M, Calaf J, Baiget M, Bernal S, Tizzano EF. Evaluation of fetal nuchal translucency in 98 pregnancies at risk for severe spinal muscular atrophy: possible relevance of the SMN2 copy number. J Matern Fetal Neonatal Med 2011; 25:1246-9. [PMID: 22082206 DOI: 10.3109/14767058.2011.636101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To study fetal nuchal translucency (NT) thickness as a possible early marker in fetuses at risk for severe spinal muscular atrophy (SMA). To investigate the significance of the survival motor neuron (SMN) 2 gene copy number in affected fetuses. METHODS We performed 2D-ultrasound in 98 pregnancies at risk for SMA, all of which underwent prenatal molecular testing of the SMN1 gene. Crown-rump length (CRL) and NT measurements were obtained in all cases before chorionic villus sampling. Fetuses were diagnosed as healthy, carriers or affected according to the SMN1 molecular testing results. SMN2 copies were also tested in all affected fetuses. RESULTS Nineteen fetuses were predicted to be affected due to the absence of the SMN1 gene, 18 of which had two SMN2 copies. Mean CRL and NT values did not differ between healthy, carrier and affected fetuses. In the remaining affected case who had only one SMN2 copy, the ultrasound examination showed a NT value of 4.98 mm and findings compatible with hypoplastic left heart. CONCLUSIONS Most affected SMA fetuses have normal NT values. Our findings support the idea that SMN2 copy number in SMA fetuses is relevant for the development of congenital heart defects and increased NT values.
Collapse
Affiliation(s)
- Juan Parra
- Department of Obstetrics and Gynecology, Hospital Sant Pau, Universitat Autonoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Current research on SMN protein and treatment strategies for spinal muscular atrophy. Neuromuscul Disord 2011; 22:193-7. [PMID: 21820901 DOI: 10.1016/j.nmd.2011.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/20/2011] [Accepted: 06/06/2011] [Indexed: 02/04/2023]
|