1
|
Soontrapa P, Liewluck T. Anoctamin 5 (ANO5) Muscle Disorders: A Narrative Review. Genes (Basel) 2022; 13:genes13101736. [PMID: 36292621 PMCID: PMC9602132 DOI: 10.3390/genes13101736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Anoctaminopathy-5 refers to a group of hereditary skeletal muscle or bone disorders due to mutations in the anoctamin 5 (ANO5)-encoding gene, ANO5. ANO5 is a 913-amino acid protein of the anoctamin family that functions predominantly in phospholipid scrambling and plays a key role in the sarcolemmal repairing process. Monoallelic mutations in ANO5 give rise to an autosomal dominant skeletal dysplastic syndrome (gnathodiaphyseal dysplasia or GDD), while its biallelic mutations underlie a continuum of four autosomal recessive muscle phenotypes: (1). limb–girdle muscular dystrophy type R12 (LGMDR12); (2). Miyoshi distal myopathy type 3 (MMD3); (3). metabolic myopathy-like (pseudometabolic) phenotype; (4). asymptomatic hyperCKemia. ANO5 muscle disorders are rare, but their prevalence is relatively high in northern European populations because of the founder mutation c.191dupA. Weakness is generally asymmetric and begins in proximal muscles in LGMDR12 and in distal muscles in MMD3. Patients with the pseudometabolic or asymptomatic hyperCKemia phenotype have no weakness, but conversion to the LGMDR12 or MMD3 phenotype may occur as the disease progresses. There is no clear genotype–phenotype correlation. Muscle biopsy displays a broad spectrum of pathology, ranging from normal to severe dystrophic changes. Intramuscular interstitial amyloid deposits are observed in approximately half of the patients. Symptomatic and supportive strategies remain the mainstay of treatment. The recent development of animal models of ANO5 muscle diseases could help achieve a better understanding of their underlying pathomechanisms and provide an invaluable resource for therapeutic discovery.
Collapse
Affiliation(s)
- Pannathat Soontrapa
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
2
|
Kraya T, Mensch A, Zierz S, Stoevesandt D, Nägel S. Update Distale Myopathien. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1737-8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie Distalen Myopathien umfassen eine Gruppe von genetisch determinierten
Muskelerkrankungen bei denen Paresen und eine fortschreitende Atrophie der
distalen Muskelgruppen im Vordergrund stehen. Der klinische Phänotyp,
der Erkrankungsbeginn, der Vererbungsmodus sowie histologische
Veränderungen helfen die einzelnen Formen zu differenzieren. Das
klinische und genetische Spektrum ist allerdings heterogen. In den letzten
Jahren hat durch die erweiterte genetische Diagnostik die Anzahl der
nachgewiesenen Mutationen exponentiell zugenommen. Im folgenden Beitrag werden
die Klassifikation, die klinischen Besonderheiten und die relevanten genetischen
Aspekte dargestellt.
Collapse
Affiliation(s)
- Torsten Kraya
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
- Klinik für Neurologie, Klinikum St. Georg Leipzig
gGmbH
| | - Alexander Mensch
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Stephan Zierz
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Dietrich Stoevesandt
- Universitätsklinik und Poliklinik für Radiologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Steffen Nägel
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| |
Collapse
|
3
|
Christiansen J, Güttsches AK, Schara-Schmidt U, Vorgerd M, Heute C, Preusse C, Stenzel W, Roos A. ANO5-related muscle diseases: from clinics and genetics to pathology and research strategies. Genes Dis 2022; 9:1506-1520. [PMID: 36157496 PMCID: PMC9485283 DOI: 10.1016/j.gendis.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
|
4
|
Vázquez J, Lefeuvre C, Escobar RE, Luna Angulo AB, Miranda Duarte A, Delia Hernandez A, Brisset M, Carlier RY, Leturcq F, Durand-Canard MC, Nicolas G, Laforet P, Malfatti E. Phenotypic Spectrum of Myopathies with Recessive Anoctamin-5 Mutations. J Neuromuscul Dis 2021; 7:443-451. [PMID: 32925086 DOI: 10.3233/jnd-200515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Biallelic variants in Anoctamin 5 (ANO5) gene are causative of limb-girdle muscular dystrophy (LGMD) R12 anoctamin5-related, non-dysferlin Miyoshi-like distal myopathy (MMD3), and asymptomatic hyperCKemia. OBJECTIVE To describe clinic, histologic, genetic and imaging features, of ANO5 mutated patients. METHODS Five patients, four from France (P1, P2, P3 and P4) and one from Mexico (P5), from four families were included. P1 and P2, belonging to group 1, had normal muscle strength; Group 2, P3, P4 and P5, presented with muscular weakness. Muscle strength was measured by manual muscle testing, Medical Research Council (MRC) grades 1/5 to 5/5. Laboratory exams included serum CK levels, nerve conduction studies (NCS)/needle electromyography (EMG), pulmonary function tests, EKG and cardiac ultrasound. ANO5 molecular screening was performed with different approaches. RESULTS Group 1 patients showed myalgias with hyperCKemia or isolated hyperCKemia. Group 2 patients presented with limb-girdle or proximo-distal muscular weakness. Serum CK levels ranged from 897 to 5000 UI/L. Muscle biopsy analysis in P4 and P5 showed subsarcolemmal mitochondrial aggregates. Electron microscopy confirmed mitochondrial proliferation and revealed discontinuity of the sarcolemmal membrane. Muscle MRI showed asymmetrical fibro-fatty substitution predominant in the lower limbs.P1 and P2 were compound heterozygous for c.191dupA (p.Asn64Lysfs*15) and c.1898 + G>A; P3 was homozygous for the c.692G>T. (p.Gly231Val); P4 harbored a novel biallelic homozygous exons 1-7 ANO5 gene deletion, and P5 was homozygous for a c.172 C > T (p.(Arg 58 Trp)) ANO5 pathogenic variant. CONCLUSIONS Our cohort confirms the wide clinical variability and enlarge the genetic spectrum of ANO5-related myopathies.
Collapse
Affiliation(s)
- José Vázquez
- Department of Medical Genetics, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México.,APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Claire Lefeuvre
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Rosa Elena Escobar
- Department of Electromyography and Muscle Dystrophies, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México
| | | | - Antonio Miranda Duarte
- Department of Medical Genetics, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México
| | - Alma Delia Hernandez
- Department of Pathology, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México
| | - Marion Brisset
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Robert-Yves Carlier
- APHP, GH U. Paris Saclay, DMU Smart Imaging, Department of Radiology, Raymond Poincaré teaching Hospital, 104 Bld R. Poincaré, 92380 Garches, France; U 1179 INSERM, Université Paris-Saclay
| | - France Leturcq
- APHP, Department of Genetics, Cochin Hospital, Paris, France
| | - Marie-Christine Durand-Canard
- APHP, Service of Physiological Explorations Raymond Poincaré Hospital, 104 Bld Raymond Poincaré, 92380 Garches, France
| | - Guillaume Nicolas
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Pascal Laforet
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Edoardo Malfatti
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| |
Collapse
|
5
|
Khawajazada T, Kass K, Rudolf K, de Stricker Borch J, Sheikh AM, Witting N, Vissing J. Muscle involvement assessed by quantitative magnetic resonance imaging in patients with anoctamin 5 deficiency. Eur J Neurol 2021; 28:3121-3132. [PMID: 34145687 DOI: 10.1111/ene.14979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Using magnetic resonance imaging (MRI) and stationary dynamometry, the aim was to investigate the muscle affection in paraspinal muscles and lower extremities and compare the muscle affection in men and women with anoctamin 5 (ANO5) deficiency. METHODS Seventeen patients (seven women) with pathogenic ANO5-mutations were included. Quantitative muscle fat fraction of back and leg muscles were assessed by Dixon MRI. Muscle strength was assessed by stationary dynamometer. Results were compared with 11 matched, healthy controls. RESULTS Muscle involvement pattern in men with ANO5-deficiency is characterized by a severe fat replacement of hamstrings, adductor and gastrocnemius muscles, while paraspinal muscles are only mildly affected, while preserved gracilis and sartorius muscles were hypertrophied. Women with ANO5-myopathy, of the same age as male patients, were very mildly affected, showing muscle affection and strength resembling that found in healthy persons, with the exception of the gluteus minimus and medius and gastrocnemii muscles that were significantly replaced by fat. Although individual muscles showed clear asymmetric involvement in a few muscle groups, the overall muscle involvement was symmetric. CONCLUSIONS Patients with ANO5-deficiency have relatively preserved paraspinal muscles on imaging and only mild reduction of trunk extension strength in men only. Our study quantifies the large difference in muscle affection in lower extremity between women and men with ANO5-deficiency. The clinical notion is that affection may be very asymmetric in ANO5-deficiency, but the present study shows that while this may be true for a few muscles, the general impression is that muscle affection is very symmetric.
Collapse
Affiliation(s)
- Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Konni Kass
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rudolf
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Aisha Munawar Sheikh
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Srinivasan R, Yun P, Neuhaus S, Mohassel P, Dastgir J, Donkervoort S, Schindler A, Mankodi A, Foley AR, Arai AE, Bönnemann CG. Cardiac MRI identifies valvular and myocardial disease in a subset of ANO5-related muscular dystrophy patients. Neuromuscul Disord 2020; 30:742-749. [PMID: 32819793 DOI: 10.1016/j.nmd.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 05/19/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022]
Abstract
Patients with bi-allelic loss-of-function mutations in the gene ANO5 most commonly present with muscular dystrophy. In some studies, patients with ANO5-related dystrophy (ANO5-RD) had evidence of mild cardiac abnormalities; however, cardiac magnetic resonance imaging (MRI) has not been used for myocardial characterization. Ten patients with genetically confirmed ANO5-RD were enrolled in a phenotyping study to better characterize cardiac involvement. Evaluations included medical history, neurological examination and cardiac evaluations (electrocardiogram, echocardiogram and cardiac MRI). All patients were clinically asymptomatic from a cardiac perspective. Muscle MRI was consistent with previous studies of ANO5-RD with increased T1 signal in the posterior and medial compartments of the upper leg and the posterior compartment of the lower leg. Cardiac studies using echocardiography and cardiac MRI revealed dilation of the aortic root and thickening of the aortic valve without significant stenosis in 3/10 patients. There was evidence of abnormal late gadolinium enhancement (LGE) on cardiac MRI in 2/10 patients. In ANO5-RD, the development of cardiac fibrosis, edema or inflammation as demonstrated by LGE has not yet been reported. Cardiac MRI can characterize cardiac tissue and may detect subtle changes before they appear on echocardiography, with potential prognostic implications.
Collapse
Affiliation(s)
- Ranjini Srinivasan
- Advanced Cardiovascular Imaging Laboratory, NHLBI, NIH, Bethesda, MD, United States
| | - Pomi Yun
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | - Sarah Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | | | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | - Alice Schindler
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | - Ami Mankodi
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | - Andrew E Arai
- Advanced Cardiovascular Imaging Laboratory, NHLBI, NIH, Bethesda, MD, United States
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States.
| |
Collapse
|
7
|
Panadés-de Oliveira L, Bermejo-Guerrero L, de Fuenmayor-Fernández de la Hoz CP, Cantero Montenegro D, Hernández Lain A, Martí P, Muelas N, Vilchez JJ, Domínguez-González C. Persistent asymptomatic or mild symptomatic hyperCKemia due to mutations in ANO5: the mildest end of the anoctaminopathies spectrum. J Neurol 2020; 267:2546-2555. [PMID: 32367299 DOI: 10.1007/s00415-020-09872-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The ANO5 gene encodes for anoctamin-5, a chloride channel involved in muscle cell membrane repair. Recessive mutations in ANO5 are associated with muscular diseases termed anoctaminopathies, which are characterized by proximal or distal weakness, or isolated hyperCKemia. We present the largest series of patients with asymptomatic/paucisymptomatic anoctaminopathy reported so far, highlighting their clinical and radiological characteristics. METHODS Twenty subjects were recruited retrospectively from the Neuromuscular Disorders Units database of two national reference centers. All had a confirmed genetic diagnosis (mean age of diagnosis was 48 years) established between 2015 and 2019. Clinical and complementary data were evaluated through clinical records. RESULTS None of the patients complained about weakness or showed abnormal muscular balance. Among paucisymptomatic patients, the main complaints or findings were generalized myalgia, exercise intolerance and calf hypertrophy, occasionally associated with calf pain. All patients showed persistent hyperCKemia, ranging from mild-moderate to severe. Muscle biopsy revealed inflammatory changes in three cases. Muscle magnetic resonance imaging revealed typical signs (preferential involvement of adductor and gastrocnemius muscles) in all but one patient. In two cases, abnormal findings were detectable only in STIR sequences (not in T1). Three patients showed radiological progression despite remaining asymptomatic. Twelve different mutations in ANO5 were detected, of which seven are novel. CONCLUSIONS Recessive mutations in ANO5 are a frequent cause of undiagnosed asymptomatic/paucisymptomatic hyperCKemia. Patients with an apparent indolent phenotype may show muscle involvement in complementary tests (muscle biopsy and imaging), which may progress over time. Awareness of anoctaminopathy as the cause of nonspecific muscular complaints or of isolated hyperCKemia is essential to correctly diagnose affected patients.
Collapse
Affiliation(s)
- Luísa Panadés-de Oliveira
- Department of Neurology, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041, Madrid, Spain.
| | - Laura Bermejo-Guerrero
- Department of Neurology, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041, Madrid, Spain
| | - Carlos Pablo de Fuenmayor-Fernández de la Hoz
- Department of Neurology, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Department of Neurology, Neuromuscular Disorders Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Pilar Martí
- Department of Neurology and IIS La Fe, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Neuromuscular Reference Center ERN-EURO-NMD, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Nuria Muelas
- Department of Neurology and IIS La Fe, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Neuromuscular Reference Center ERN-EURO-NMD, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Juan J Vilchez
- Department of Neurology and IIS La Fe, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Neuromuscular Reference Center ERN-EURO-NMD, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Cristina Domínguez-González
- Department of Neurology, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Department of Neurology, Neuromuscular Disorders Unit, Hospital Universitario 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| |
Collapse
|
8
|
Mensch A, Kraya T, Koester F, Müller T, Stoevesandt D, Zierz S. Whole-body muscle MRI of patients with MATR3-associated distal myopathy reveals a distinct pattern of muscular involvement and highlights the value of whole-body examination. J Neurol 2020; 267:2408-2420. [PMID: 32361838 PMCID: PMC7358922 DOI: 10.1007/s00415-020-09862-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE MATR3-associated distal myopathy is a rare distal myopathy predominantly affecting lower legs as well as wrist- and finger extensors. Whilst most distal myopathies are clinically and genetically well characterized, diagnosis often remains challenging. Pattern-based magnetic resonance imaging (MRI) approaches offer valuable additional information. However, a consistent pattern of muscular affection is missing for most distal myopathies. Thus, the aim of the present study was to establish a disease-specific pattern of muscular involvement in MATR3-associated distal myopathy using whole-body MRI. METHODS 15 patients (25-79 years of age, 7 female) with MATR3-associated distal myopathy were subjected to whole-body MRI. The grade of fatty involution for individual muscles was determined using Fischer-Grading. Results were compared to established MRI-patterns of other distal myopathies. RESULTS There was a predominant affection of the distal lower extremities. Lower legs showed a severe fatty infiltration, prominently affecting gastrocnemius and soleus muscle. In thighs, a preferential involvement of semimembranous and biceps femoris muscle was observed. Severe affection of gluteus minimus muscle as well as axial musculature, mainly affecting the thoracic segments, was seen. A sufficient discrimination to other forms of distal myopathy based solely on MRI-findings of the lower extremities was not possible. However, the inclusion of additional body parts seemed to yield specificity. INTERPRETATION Muscle MRI of patients with MATR3-associated distal myopathy revealed a distinct pattern of muscular involvement. The usage of whole-body muscle MRI provided valuable additional findings as compared to regular MRI of the lower extremities to improve distinction from other disease entities.
Collapse
Affiliation(s)
- Alexander Mensch
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Torsten Kraya
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.,Department of Neurology, Klinikum St. Georg, Leipzig, Germany
| | - Felicitas Koester
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.,Department of Radiology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Tobias Müller
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich Stoevesandt
- Department of Radiology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
9
|
Clinical spectrum and gene mutations in a Chinese cohort with anoctaminopathy. Neuromuscul Disord 2019; 29:628-633. [DOI: 10.1016/j.nmd.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/25/2023]
|
10
|
Jungbluth H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2018; 43:24-43. [PMID: 28111795 DOI: 10.1111/nan.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Over the last two decades, muscle (magnetic resonance) imaging has become an important complementary tool in the diagnosis and differential diagnosis of inherited neuromuscular disorders, particularly in conditions where the pattern of selective muscle involvement is often more predictive of the underlying genetic background than associated clinical and histopathological features. Following an overview of different imaging modalities, the present review will give a concise introduction to systematic image analysis and interpretation in genetic neuromuscular disorders. The pattern of selective muscle involvement will be presented in detail in conditions such as the congenital or myofibrillar myopathies where muscle imaging is particularly useful to inform the (differential) diagnosis, and in disorders such as Duchenne or fascioscapulohumeral muscular dystrophy where the diagnosis is usually made on clinical grounds but where detailed knowledge of disease progression on the muscle imaging level may inform better understanding of the natural history. Utilizing the group of the congenital myopathies as an example, selected case studies will illustrate how muscle MRI can be used to inform the diagnostic process in the clinico-pathological context. Future developments, in particular, concerning the increasing use of whole-body MRI protocols and novel quantitative fat assessments techniques potentially relevant as an outcome measure, will be briefly outlined.
Collapse
Affiliation(s)
- H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, London, UK.,Department of Clinical and Basic Neuroscience, IoPPN, King's College, London, UK
| |
Collapse
|
11
|
Bugiardini E, Morrow JM, Shah S, Wood CL, Lynch DS, Pitmann AM, Reilly MM, Houlden H, Matthews E, Parton M, Hanna MG, Straub V, Yousry TA. The Diagnostic Value of MRI Pattern Recognition in Distal Myopathies. Front Neurol 2018; 9:456. [PMID: 29997562 PMCID: PMC6028608 DOI: 10.3389/fneur.2018.00456] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
Objective: Distal myopathies are a diagnostically challenging group of diseases. We wanted to understand the value of MRI in the current clinical setting and explore the potential for optimizing its clinical application. Methods: We retrospectively audited the diagnostic workup in a distal myopathy patient cohort, reassessing the diagnosis, whilst documenting the usage of MRI. We established a literature based distal myopathies MRI pattern template and assessed its diagnostic utility in terms of sensitivity, specificity, and potential impact on the diagnostic workup. Results: Fifty-five patients were included; in 38 with a comprehensive set of data the diagnostic work-up was audited. The median time from symptoms onset to diagnosis was 12.1 years. The initial genetic diagnostic rate was 39%; 18% were misdiagnosed as neuropathies and 13% as inclusion body myositis (IBM). Based on 21 publications we established a MRI pattern template. Its overall sensitivity (50%) and specificity (32%) were low. However in some diseases (e.g., MYOT-related myopathy, TTN-HMERF) MRI correctly identified the causative gene. The number of genes suggested by MRI pattern analysis was smaller compared to clinical work up (median 1 vs. 9, p < 0.0001) but fewer genes were correctly predicted (5/10 vs. 7/10). MRI analysis ruled out IBM in all cases. Conclusion: In the diagnostic work-up of distal myopathies, MRI is useful in assisting genetic testing and avoiding misdiagnosis (IBM). The overall low sensitivity and specificity limits its generalized use when traditional single gene test methods are applied. However, in the context of next generation sequencing MRI may represent a valuable tool for interpreting complex genetic results.
Collapse
Affiliation(s)
- Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jasper M. Morrow
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sachit Shah
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Claire L. Wood
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom
| | - David S. Lynch
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alan M. Pitmann
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Mary M. Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Matt Parton
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G. Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom
| | - Tarek A. Yousry
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
- *Correspondence: Tarek A. Yousry
| |
Collapse
|
12
|
Papadopoulos C, LaforÊt P, Nectoux J, Stojkovic T, Wahbi K, Carlier RY, Carlier PG, Leonard-Louis S, Leturcq F, Romero N, Eymard B, Behin A. Hyperckemia and myalgia are common presentations of anoctamin-5-related myopathy in French patients. Muscle Nerve 2017; 56:1096-1100. [PMID: 28187523 DOI: 10.1002/mus.25608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Patients with anoctamin-5 (ANO5) mutations may present not only with limb-girdle muscular dystrophy type 2L or adult-onset Miyoshi-type myopathy but also with asymptomatic hyperCKemia, exercise intolerance, or rhabdomyolysis. MATERIALS AND METHODS Data from 38 patients in France with ANO5 mutations with and without muscle weakness on first examination were compared. RESULTS Twenty patients presented without muscle weakness. Median age at symptom onset or discovery of hyperCKemia was 23 years. Creatine kinase levels ranged from 200 to 40,000 U/L. Electromyography showed a myopathic pattern in 5 patients, and muscle imaging showed involvement of posterior calf muscles in 10 patients. Mild cardiac involvement was observed in 2 patients. Sixteen patients remain free of weakness after a median follow-up period of 5 years. DISCUSSION Asymptomatic, sometimes mild hyperCKemia or exercise intolerance is a presentation of ANO5-related myopathy and may remain isolated or precede muscle weakness by many years. Muscle Nerve 56: 1096-1100, 2017.
Collapse
Affiliation(s)
- Constantinos Papadopoulos
- APHP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GH Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Pascal LaforÊt
- APHP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GH Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Juliette Nectoux
- APHP, Service de Biochimie et Génétique Moléculaire, Cochin Hospital, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GH Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Karim Wahbi
- APHP, Pitié-Salpêtrière Hospital, Myology Institute, Paris, France
| | - Robert-Yves Carlier
- Radiological Unit, Teaching Hospital R. Poincaré, University Hospital of Paris, Versailles St Quentin University, Garches, France
| | | | - Sarah Leonard-Louis
- APHP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GH Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - France Leturcq
- APHP, Service de Biochimie et Génétique Moléculaire, Cochin Hospital, Paris, France
| | - Norma Romero
- Laboratoire de Pathologie Musculaire Risler, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | - Bruno Eymard
- APHP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GH Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Anthony Behin
- APHP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GH Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
13
|
Ylikallio E, Auranen M, Mahjneh I, Lamminen A, Kousi M, Träskelin AL, Muurinen T, Löfberg M, Salmi T, Paetau A, Lehesjoki AE, Piirilä P, Kiuru-Enari S. Decreased Aerobic Capacity in ANO5-Muscular Dystrophy. J Neuromuscul Dis 2016; 3:475-485. [DOI: 10.3233/jnd-160186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Ibrahim Mahjneh
- Division of Neurology, Pietarsaari District Hospital, Pietarsaari, Finland
- Department of Neurology, MRC Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Antti Lamminen
- Department of Radiology, HUS Medical Imaging Center, Helsinki, Finland
| | - Maria Kousi
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Tiina Muurinen
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mervi Löfberg
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Tapani Salmi
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, HUSLAB and University of Helsinki, Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
14
|
Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2016; 264:1320-1333. [PMID: 27888415 DOI: 10.1007/s00415-016-8350-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
A growing body of the literature supports the use of magnetic resonance imaging as a potential biomarker for disease severity in the hereditary myopathies. We performed a systematic review of the medical literature to evaluate patterns of fat infiltration observed in magnetic resonance imaging studies of muscular dystrophy and congenital myopathy. Searches were performed using MEDLINE, EMBASE, and grey literature databases. Studies that described fat infiltration of muscles in patients with muscular dystrophy or congenital myopathy were selected for full-length review. Data on preferentially involved or spared muscles were extracted for analysis. A total of 2172 titles and abstracts were screened, and 70 publications met our criteria for inclusion in the systematic review. There were 23 distinct genetic disorders represented in this analysis. In most studies, preferential involvement and sparing of specific muscles were reported. We conclude that magnetic resonance imaging studies can be used to identify distinct patterns of muscle involvement in the hereditary myopathies. However, larger studies and standardized methods of reporting are needed to develop imaging as a diagnostic tool in these diseases.
Collapse
|
15
|
Fatehi F, Salort-Campana E, Le Troter A, Bendahan D, Attarian S. Muscle MRI of facioscapulohumeral dystrophy (FSHD): A growing demand and a promising approach. Rev Neurol (Paris) 2016; 172:566-571. [PMID: 27663058 DOI: 10.1016/j.neurol.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/28/2016] [Accepted: 08/26/2016] [Indexed: 01/10/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), an inherited and progressive muscle disorder, is among the most common hereditary muscle disorders. From a clinical vantage point, FSHD is characterized by weakness of the facial, shoulder (often with scapular winging), arm (including biceps and triceps) and abdominal muscles. Forearm muscles are usually spared and weakness is usually asymmetrical. Over the past few decades, muscle magnetic resonance imaging (MRI) has become established as a reliable and accurate noninvasive tool for the diagnosis and assessment of progression in neuromuscular diseases, showing specific patterns of muscle involvement for a number of myopathies. More recently, MRI has been used to noninvasively identify quantitative biomarkers, allowing evaluation of the natural progression of disease and assessment of therapeutic interventions. In the present review, the intention was to present the most significant MRI developments related to diagnosis and pattern recognition in FSHD and to discuss its capacity to provide outcome measures.
Collapse
Affiliation(s)
- F Fatehi
- Reference center for Neuromuscular disorders and ALS, Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France; Iranian Center of Neurological research and Shariati hospital, Neurology Department, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salort-Campana
- Reference center for Neuromuscular disorders and ALS, Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France; Aix-Marseille université, Inserm UMR S 910 Medical Genetics and Functional Genomics, 13385 Marseille, France
| | - A Le Troter
- Aix-Marseille université, centre de résonance magnétique biologique et médicale, UMR CNRS 7339, 13385 Marseille, France
| | - D Bendahan
- Aix-Marseille université, centre de résonance magnétique biologique et médicale, UMR CNRS 7339, 13385 Marseille, France
| | - S Attarian
- Reference center for Neuromuscular disorders and ALS, Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France; Aix-Marseille université, Inserm UMR S 910 Medical Genetics and Functional Genomics, 13385 Marseille, France.
| |
Collapse
|
16
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
17
|
Bohlega S, Monies DM, Abulaban AA, Murad HN, Alhindi HN, Meyer BF. Clinical and genetic features of anoctaminopathy in Saudi Arabia. ACTA ACUST UNITED AC 2015; 20:173-7. [PMID: 25864073 PMCID: PMC4727640 DOI: 10.17712/nsj.2015.2.20140547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives: Characterization of the phenotypic, pathological, radiological, and genetic findings in 2 Saudi Arabian families with anoctaminopathies, and limb girdle muscular dystrophy type 2L (LGMD2L). Methods: Over a 2-year period from December 2010 to January 2013, the clinical presentations were analyzed and all genes responsible for limb girdle muscular dystrophy (LGMD) were screened in families seen at King Faisal Specialist Hospital and Research Centre, a tertiary care hospital in Riyadh, Saudi Arabia. Out of 66 families with LGMD, we identified 2 families (3.1%) with anoctaminopathy, ANO5 muscular dystrophy. Results: In the first case, a man presented with asymmetrical calves’ muscles weakness and atrophy, which was first noted at age 39. The creatinine kinase (CK) level was >20x normal, muscle biopsy showed necrotizing myopathic changes, and an MRI of the legs showed fatty-tissue replacement to muscle tissue with volume loss involving the gastrocnemius and soleus muscles in an asymmetrical fashion. Minimal disease progression was noted over 18 years of follow up. Exercise induced recurrent rhabdomyolysis was noted over the last 2 years. A novel ANO5 gene mutation (Arg58Trp) was found. In the second family, a male presented at the age of 41 with asymptomatic hyperCkemia and intermittent dyspnea. Over 10 years follow up, he became disabled with muscle cramps, rhabdomyolysis, myoglobinurea, and difficulty ambulating. Muscle biopsy showed necrotizing myopathy and perivascular and interstitial amyloid deposit in skeletal muscle. A homozygous deletion of 11.9 Kb encompassing exon 13 to exon 17 was found in the ANO5 gene. Full cardiac investigations were normal in both patients. Conclusion: The prevalence of LGMD2L is approximately 3.1% in a Saudi Arabian native LGMD cohort. Slowly progressive, late onset, and asymmetrical weakness was the salient features in these 2 families. The genetic findings were novel and will add to the spectrum of ANO5 known mutations.
Collapse
Affiliation(s)
- Saeed Bohlega
- Department of Neurosciences, MBC 76, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia. E-mail:
| | | | | | | | | | | |
Collapse
|
18
|
ten Dam L, van der Kooi AJ, Rövekamp F, Linssen WH, de Visser M. Comparing clinical data and muscle imaging of DYSF and ANO5 related muscular dystrophies. Neuromuscul Disord 2014; 24:1097-102. [DOI: 10.1016/j.nmd.2014.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/29/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022]
|
19
|
Lahoria R, Winder TL, Lui J, Al-Owain MA, Milone M. Novel ANO5 homozygous microdeletion causing myalgia and unprovoked rhabdomyolysis in an Arabic man. Muscle Nerve 2014; 50:610-3. [PMID: 24889862 DOI: 10.1002/mus.24302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recessive mutations in the anoctamin-5 gene (ANO5) cause a spectrum of clinical phenotypes, including limb-girdle muscular dystrophy (LGMD 2L), distal myopathy, and asymptomatic hyperCKemia. METHODS In this report we describe our clinical, electrophysiological, pathological, and molecular findings in a subject with anoctaminopathy-5. RESULTS A 49-year-old Arabic man from a consanguineous family presented with a 5-year history of myalgias, hyperCKemia and an episode of unprovoked rhabdomyolysis. Muscle biopsy showed mild myopathic changes and interstitial amyloid deposition. ANO5 analysis detected a novel homozygous deletion of approximately 11.9 kb encompassing exons 13-17, predicted to be pathogenic. CONCLUSIONS Anoctaminopathy-5 can manifest with a phenotype reminiscent of metabolic myopathy and should be considered as a potential cause of myalgia and myoglobinuria. Amyloid deposition in the muscle biopsy is helpful for the diagnosis. A novel homozygous ANO5 deletion was identified, suggesting that screening for common mutations may have low yield in non-European subjects.
Collapse
Affiliation(s)
- Rajat Lahoria
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, USA
| | | | | | | | | |
Collapse
|