1
|
Mohar NP, Langland CJ, Darr Z, Viles J, Moore SA, Darbro BW, Wallrath LL. A genetic variant in SMAD7 acts as a modifier of LMNA-associated muscular dystrophy, implicating SMAD signaling as a therapeutic target. SCIENCE ADVANCES 2025; 11:eads7903. [PMID: 40249815 PMCID: PMC12007578 DOI: 10.1126/sciadv.ads7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Mutations in LMNA cause multiple types of muscular dystrophy (LMNA-MD). The symptoms of LMNA-MD are highly variable and sensitive to genetic background. To identify genetic contributions to this phenotypic variability, we performed whole-genome sequencing on four siblings possessing the same LMNA mutation with differing degrees of skeletal muscle disease severity. We identified a variant in SMAD7 that segregated with severe muscle disease. To functionally test the SMAD7 variant, we generated a Drosophila model possessing the LMNA mutation and the SMAD7 variant in the orthologous fly genes. The SMAD7 variant increased SMAD signaling and enhanced muscle defects caused by the mutant lamin. Conversely, overexpression of wild-type SMAD7 rescued muscle function. These findings were extended to humans by showing that SMAD signaling is increased in muscle biopsy tissue from individuals with LMNA-MD compared to age-matched controls. Collectively, our findings support SMAD7 as the first functionally tested genetic modifier for LMNA-MD and suggest components of the SMAD pathway as therapeutic targets.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J. Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zachary Darr
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent researcher, Gowrie, Iowa, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
3
|
Hedberg-Oldfors C, Elíasdóttir Ó, Geijer M, Lindberg C, Oldfors A. Dominantly inherited myosin IIa myopathy caused by aberrant splicing of MYH2. BMC Neurol 2022; 22:428. [PMCID: PMC9664609 DOI: 10.1186/s12883-022-02935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Myosin heavy chain (MyHC) isoforms define the three major muscle fiber types in human extremity muscles. Slow beta/cardiac MyHC (MYH7) is expressed in type 1 muscle fibers. MyHC IIa (MYH2) and MyHC IIx (MYH1) are expressed in type 2A and 2B fibers, respectively. Whereas recessive MyHC IIa myopathy has been described in many cases, myopathy caused by dominant MYH2 variants is rare and has been described with clinical manifestations and muscle pathology in only one family and two sporadic cases.
Methods
We investigated three patients from one family with a dominantly inherited myopathy by clinical investigation, whole-genome sequencing, muscle biopsy, and magnetic resonance imaging (MRI).
Results
Three siblings, one woman and two men now 54, 56 and 66 years old, had experienced muscle weakness initially affecting the lower limbs from young adulthood. They have now generalized proximal muscle weakness affecting ambulation, but no ophthalmoplegia. Whole-genome sequencing identified a heterozygous MYH2 variant, segregating with the disease in the three affected individuals: c.5673 + 1G > C. Analysis of cDNA confirmed the predicted splicing defect with skipping of exon 39 and loss of residues 1860–1891 in the distal tail of the MyHC IIa, largely overlapping with the filament assembly region (aa1877–1905). Muscle biopsy in two of the affected individuals showed prominent type 1 muscle fiber predominance with only a few very small, scattered type 2A fibers and no type 2B fibers. The small type 2A fibers were frequently hybrid fibers with either slow MyHC or embryonic MyHC expression. The type 1 fibers showed variation in fiber size, internal nuclei and some structural alterations. There was fatty infiltration, which was also demonstrated by MRI.
Conclusion
Dominantly inherited MyHC IIa myopathy due to a splice defect causing loss of amino acids 1860–1891 in the distal tail of the MyHC IIa protein including part of the assembly competence domain. The myopathy is manifesting with slowly progressive muscle weakness without overt ophthalmoplegia and markedly reduced number and size of type 2 fibers.
Collapse
|
4
|
Oatmen K, Camelo-Piragua S, Zaghloul N. Novel mutation in the MYH2 gene in a symptomatic neonate with a hereditary myosin myopathy. J Neonatal Perinatal Med 2021; 15:63-68. [PMID: 34459418 DOI: 10.3233/npm-210780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Hereditary myosin myopathies are muscle disorders caused by mutations in myosin heavy chain genes. The MYH2 gene encodes the fast 2A skeletal muscle isoform, and mutations manifest as joint contractures, muscle weakness, and external ophthalmoplegia. Muscle biopsy shows decreased type 2A fibers, and vacuoles are sometimes present in adults with progressive disease. PRESENTATION OF CASE This case describes a full term baby boy with hypotonia, dysmorphic features, dysphagia, and aspiration. Whole genome sequencing detected a novel heterozygous variant in the MYH2 gene. Muscle biopsy showed decreased type 2A fibers and vacuoles in myofibers. DISCUSSION Hypotonia and dysphagia are common in infants with a MYH2 myopathy. However, dysmorphic features and vacuoles on biopsy have not previous been described in infants with MYH2 myopathies. CONCLUSION This case reports an unusual phenotype of a rare neonatal-onset congenital myopathy associated with a novel heterozygous variant in MYH2.
Collapse
Affiliation(s)
- K Oatmen
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - S Camelo-Piragua
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - N Zaghloul
- Department of Pediatrics, Division of Neonatology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Huang YN, Chuang HJ, Hsueh HW, Huang HC, Lee NC, Chao CC, Huang PH, Lee YC, Lin KP, Yang CC, Hsieh ST. A case of GNE myopathy mimicking hereditary motor neuropathy. Eur J Neurol 2021; 27:2389-2391. [PMID: 32860282 DOI: 10.1111/ene.14489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
A 36-year-old woman who presented with upper limb distal weakness since the age of 15 years, with gradual progression to the lower limbs, is reported. Hereditary motor neuropathy was initially suspected based on distal weakness and hyporeflexia; however, whole exome sequencing accidentally revealed a compound heterozygous variant in the GNE gene, and ultrasound revealed increased homogeneous echogenicity in the involved muscles, which is characteristic of myopathic changes. Muscle magnetic resonance imaging revealed fatty infiltration in all limb muscles, sparing the triceps brachii, vastus lateralis and vastus medialis. Muscle biopsy revealed intracytoplasmic rimmed vacuole, supporting the diagnosis of GNE myopathy.
Collapse
Affiliation(s)
- Y-N Huang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-J Chuang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-W Hsueh
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-C Huang
- Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - N-C Lee
- Department of Medal Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-C Chao
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - P-H Huang
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-C Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - K-P Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - C-C Yang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-T Hsieh
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Madigan NN, Polzin MJ, Cui G, Liewluck T, Alsharabati MH, Klein CJ, Windebank AJ, Mer G, Milone M. Filamentous tangles with nemaline rods in MYH2 myopathy: a novel phenotype. Acta Neuropathol Commun 2021; 9:79. [PMID: 33926564 PMCID: PMC8082902 DOI: 10.1186/s40478-021-01168-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022] Open
Abstract
The MYH2 gene encodes the skeletal muscle myosin heavy chain IIA (MyHC-IIA) isoform, which is expressed in the fast twitch type 2A fibers. Autosomal dominant or recessive pathogenic variants in MYH2 lead to congenital myopathy clinically featured by ophthalmoparesis and predominantly proximal weakness. MYH2-myopathy is pathologically characterized by loss and atrophy of type 2A fibers. Additional myopathological abnormalities have included rimmed vacuoles containing small p62 positive inclusions, 15–20 nm tubulofilaments, minicores and dystrophic changes. We report an adult patient with late-pediatric onset MYH2-myopathy caused by two heterozygous pathogenic variants: c.3331C>T, p.Gln1111* predicted to result in truncation of the proximal tail region of MyHC-IIA, and c.1546T>G, p.Phe516Val, affecting a highly conserved amino acid within the highly conserved catalytic motor head relay loop. This missense variant is predicted to result in a less compact loop domain and in turn could affect the protein affinity state. The patient’s genotype is accompanied by a novel myopathological phenotype characterized by centralized large myofilamentous tangles associated with clusters of nemaline rods, and ring fibers, in addition to the previously reported rimmed vacuoles, paucity and atrophy of type 2A fibers. Electron microscopy demonstrated wide areas of disorganized myofibrils which were oriented in various planes of direction and entrapped multiple nemaline rods, as corresponding to the large tangles with rods seen on light microscopy. Nemaline rods were rarely observed also in nuclei. We speculate that the mutated MyHC-IIA may influence myofibril disorganization. While nemaline rods have been described in myopathies caused by pathogenic variants in genes encoding several sarcomeric proteins, to our knowledge, nemaline rods have not been previously described in MYH2-myopathy.
Collapse
|
7
|
Telese R, Pagliarani S, Lerario A, Ciscato P, Fagiolari G, Cassandrini D, Grimoldi N, Conte G, Cinnante C, Santorelli FM, Comi GP, Sciacco M, Peverelli L. MYH2 myopathy, a new case expands the clinical and pathological spectrum of the recessive form. Mol Genet Genomic Med 2020; 8:e1320. [PMID: 32578970 PMCID: PMC7507101 DOI: 10.1002/mgg3.1320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background Hereditary myosin myopathies are a group of rare muscle disorders, caused by mutations in genes encoding for skeletal myosin heavy chains (MyHCs). MyHCIIa is encoded by MYH2 and is expressed in fast type 2A and 2B muscle fibers. MYH2 mutations are responsible for an autosomal dominant (AD) progressive myopathy, characterized by the presence of rimmed vacuoles and by a reduction in the number and size of type 2A fibers, and a recessive early onset myopathy characterized by complete loss of type 2A fibers. Recently, a patient with a homozygous mutation but presenting a dominant phenotype has been reported. Methods The patient was examined thoroughly and two muscle biopsies were performed through the years. NGS followed by confirmation in Sanger sequencing was used to identify the genetic cause. Results We describe the second case presenting with late‐onset ophthalmoparesis, ptosis, diffuse muscle weakness, and histopathological features typical for AD forms but with a recessive MYH2 genotype. Conclusion This report contributes to expand the clinical and genetic spectrum of MYH2 myopathies and to increase the awareness of these very rare diseases.
Collapse
Affiliation(s)
- Roberta Telese
- Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Serena Pagliarani
- Dino Ferrari Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alberto Lerario
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gigliola Fagiolari
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Nadia Grimoldi
- University of Milan, Neurosurgey Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Giacomo P Comi
- Dino Ferrari Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Peverelli
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Parikh S, Karaa A, Goldstein A, Bertini ES, Chinnery PF, Christodoulou J, Cohen BH, Davis RL, Falk MJ, Fratter C, Horvath R, Koenig MK, Mancuso M, McCormack S, McCormick EM, McFarland R, Nesbitt V, Schiff M, Steele H, Stockler S, Sue C, Tarnopolsky M, Thorburn DR, Vockley J, Rahman S. Diagnosis of 'possible' mitochondrial disease: an existential crisis. J Med Genet 2019; 56:123-130. [PMID: 30683676 DOI: 10.1136/jmedgenet-2018-105800] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 02/02/2023]
Abstract
Primary genetic mitochondrial diseases are often difficult to diagnose, and the term 'possible' mitochondrial disease is used frequently by clinicians when such a diagnosis is suspected. There are now many known phenocopies of mitochondrial disease. Advances in genomic testing have shown that some patients with a clinical phenotype and biochemical abnormalities suggesting mitochondrial disease may have other genetic disorders. In instances when a genetic diagnosis cannot be confirmed, a diagnosis of 'possible' mitochondrial disease may result in harm to patients and their families, creating anxiety, delaying appropriate diagnosis and leading to inappropriate management or care. A categorisation of 'diagnosis uncertain', together with a specific description of the metabolic or genetic abnormalities identified, is preferred when a mitochondrial disease cannot be genetically confirmed.
Collapse
Affiliation(s)
- Sumit Parikh
- Mitochondrial Medicine Center, Neurologic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amel Karaa
- Genetics Unit, Mitochondrial Disease Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Neurodevelopmental Genomics Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Bruce H Cohen
- Department of Pediatrics and Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA.,Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ryan L Davis
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurogenetics, Koling Institute, University of Sydney and Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carl Fratter
- NHS Specialized Services for Rare Mitochondrial Disorders of Adults and Children UK, Oxford, UK.,Oxford Medical Genetics Laboratories, Oxford University, Oxford, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mary Kay Koenig
- Department of Pediatrics, Mitochondrial Center, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Michaelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Shana McCormack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Robert McFarland
- Institute of Neurosciences, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
| | - Victoria Nesbitt
- Institute of Neurosciences, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Oxford University Hospitals, Oxford, UK
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert-Debré University Hospital, APHP, UMR1141, PROTECT, INSERM, Université Paris-Diderot, Paris, France
| | - Hannah Steele
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurology, Sunderland Royal Hospital, Sunderland, UK
| | - Silvia Stockler
- Department of Pediatrics, Division of Biochemical Diseases, University of British Columbia, Vancouver, Canada
| | - Carolyn Sue
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurogenetics, Koling Institute, University of Sydney and Royal North Shore Hospital, Sydney, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, NewSouth Wales, Australia
| | - Mark Tarnopolsky
- Department of Pediatrics, Neuromuscular and Neurometabolic Clinic, McMaster University, Hamilton, Ontario, Canada
| | - David R Thorburn
- Royal Children's Hospital, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine; Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK.,Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Chen N, Shen N, Yu Y, Chen C, Li X, Liang J, Yang Y, Du Q. Clinical remission of myopathy with MYH2 deficiency after precision medicine-developed rehabilitation: a case report. Am J Transl Res 2018; 10:3827-3832. [PMID: 30662633 PMCID: PMC6291703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Here, we describe the case of a motor developmental disorder associated with intellectual disability accompanied by MYH2 mutations (c.2266G>A and c.4258C>T) in a female child in China. Her initial detailed functional rehabilitation evaluation gauged motor skills, balance, verbal language, and daily living skills. A general therapy plan was then established to enhance balance, muscle strength in the lower extremities, walking, gross and fine motor function, and family education. Clinicians and therapists later modified her rehabilitation regimen after her MYH2 mutations were identified by adding specific mobility and endurance exercise to the original plan. The clinical remission of myopathy with MYH2 missense mutations was observed in the patient after this targeted rehabilitation, indicating that precision therapy is very effective for developing a suitable rehabilitation program for patients with unexplained myopathies.
Collapse
Affiliation(s)
- Nan Chen
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
- Department of Rehabilitation Medicine, Chongming Branch of Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 202150, China
- Key Laboratory of Exercise and Health Sciences, Ministry of Education, Shanghai University of SportShanghai 200438, China
| | - Nan Shen
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Chen Chen
- Shanghai University of SportShanghai 200438, China
| | - Xin Li
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Juping Liang
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Yuqi Yang
- School of Nursing and Health Management, Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Qing Du
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| |
Collapse
|
10
|
Valberg SJ, Henry ML, Perumbakkam S, Gardner KL, Finno CJ. An E321G MYH1 mutation is strongly associated with nonexertional rhabdomyolysis in Quarter Horses. J Vet Intern Med 2018; 32:1718-1725. [PMID: 30079499 PMCID: PMC6189380 DOI: 10.1111/jvim.15299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An E321G mutation in MYH1 was recently identified in Quarter Horses (QH) with immune-mediated myositis (IMM) defined by a phenotype of gross muscle atrophy and myofiber lymphocytic infiltrates. HYPOTHESIS/OBJECTIVES We hypothesized that the MYH1 mutation also was associated with a phenotype of nonexertional rhabdomyolysis. The objective of this study was to determine the prevalence of the MYH1 mutation in QH with exertional (ER) and nonexertional (nonER) rhabdomyolysis. ANIMALS Quarter Horses: 72 healthy controls, 85 ER-no atrophy, 56 ER-atrophy, 167 nonER horses selected regardless of muscle atrophy. METHODS Clinical and histopathologic information and DNA was obtained from a database for (1) ER > 2 years of age, with or without atrophy and (2) nonER creatine kinase (CK) ≥ 5000 U/L, <5 years of age. Horses were genotyped for E321G MYH1 by pyrosequencing. RESULTS The MYH1 mutation was present in a similar proportion of ER-no atrophy (1/56; 2%) and in a higher proportion of ER-atrophy (25/85; 29%) versus controls (4/72; 5%). The MYH1 mutation was present in a significantly higher proportion of nonER (113/165; 68%) than controls either in the presence (39/42; 93%) or in absence (72/123; 59%) of gross atrophy. Lymphocytes were present in <18% of muscle samples with the MYH1 mutation. CONCLUSIONS AND CLINICAL IMPORTANCE Although not associated with ER, the MYH1 mutation is associated with atrophy after ER. The MYH1 mutation is highly associated with nonER regardless of whether muscle atrophy or lymphocytic infiltrates are present. Genetic testing will enhance the ability to diagnose MYH1 myopathies (MYHM) in QH.
Collapse
Affiliation(s)
- Stephanie J. Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Marisa L. Henry
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Sudeep Perumbakkam
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Keri L. Gardner
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Carrie J. Finno
- Department of Population Health and ReproductionUniversity of California‐DavisDavisCalifornia
| |
Collapse
|
11
|
Findlay AR, Harms MB, Pestronk A, Weihl CC. Homozygous recessive MYH2 mutation mimicking dominant MYH2 associated myopathy. Neuromuscul Disord 2018; 28:675-679. [PMID: 29934118 DOI: 10.1016/j.nmd.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/30/2018] [Accepted: 05/12/2018] [Indexed: 01/14/2023]
Abstract
Mutations in MYH2 that encodes myosin heavy chain IIa cause both dominant and recessively inherited myopathies. Patients with dominantly inherited MYH2 missense mutations present with ophthalmoplegia and progressive proximal limb weakness. Muscle biopsy reveals rimmed vacuoles and inclusions, prompting this entity to initially be described as hereditary inclusion body myopathy 3. In contrast, patients with recessive MYH2 mutations have early onset, non-progressive, diffuse weakness and ophthalmoplegia. Muscle biopsy reveals near or complete absence of type 2A fibers with no vacuole or inclusion pathology. We describe a patient with childhood onset ophthalmoplegia, progressive proximal muscle weakness beginning in adolescence, and muscle biopsy with myopathic changes and rimmed vacuoles. Although this patient's disease course and histopathology is consistent with dominant MYH2 mutations, whole exome sequencing revealed a c.737 G>A p.Arg246His homozygous MYH2 variant. These findings expand the clinical and pathologic phenotype of recessive MYH2 myopathies.
Collapse
Affiliation(s)
- Andrew R Findlay
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, United States
| | | | - Alan Pestronk
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, United States.
| |
Collapse
|
12
|
Tsabari R, Daum H, Kerem E, Fellig Y, Dor T. Congenital myopathy due to myosin heavy chain 2 mutation presenting as chronic aspiration pneumonia in infancy. Neuromuscul Disord 2017; 27:947-950. [PMID: 28729039 DOI: 10.1016/j.nmd.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Abstract
A 7-week-old infant presented with persistent noisy breathing and aspirations during swallowing. Neurological examination and brain MRI were normal. His 12-year-old brother underwent pneumonectomy at the age of 10 years due to recurrent aspirations leading to severe lung damage. The older brother developed subsequently ophthalmoplegia and nystagmus along with mild weakness of the neck flexors and proximal muscles. Exome analysis revealed homozygosity for a novel truncating mutation p.G800fs27* in the Myosin Heavy Chain 2 (MYH2) gene in both brothers, while parents and an unaffected sibling were heterozygous. A muscle biopsy from the older brother showed absence of type-2 muscle fibers and predominance of type-1 fibers. The aspirations causing pneumonia likely result from weakness of the laryngeal muscles, normally rich in type-2 fibers. The findings expand the phenotypic spectrum of MYH2 deficiency. MYH2 mutations should be included in the differential diagnosis of infants presenting with recurrent aspirations.
Collapse
Affiliation(s)
- R Tsabari
- Department of Pediatrics, Pediatric Pulmonology and Cystic Fibrosis Center, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - H Daum
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - E Kerem
- Department of Pediatrics, Pediatric Pulmonology and Cystic Fibrosis Center, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew-University-Medical-Center Jerusalem, Israel
| | - T Dor
- Neuropediatric Unit, Hadassah-Hebrew University Medical Center Jerusalem, Israel.
| |
Collapse
|
13
|
Hernández-Laín A, Esteban-Pérez J, Montenegro DC, Domínguez-González C. Myosin myopathy with external ophthalmoplegia associated with a novel homozygous mutation in MYH2. Muscle Nerve 2016; 55:E8-E10. [PMID: 27490141 DOI: 10.1002/mus.25365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Aurelio Hernández-Laín
- Servicio de Anatomía Patológica (Neuropatología) and Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain, Z.P., 28041.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Esteban-Pérez
- Unidad de Neuromuscular, Servicio de Neurología, Hospital Universitario 12 de Octubre de Madrid
| | - Diana Cantero Montenegro
- Servicio de Anatomía Patológica (Neuropatología) and Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain, Z.P., 28041.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Cristina Domínguez-González
- Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Neuromuscular, Servicio de Neurología, Hospital Universitario 12 de Octubre de Madrid
| |
Collapse
|
14
|
Willis T, Hedberg-Oldfors C, Alhaswani Z, Kulshrestha R, Sewry C, Oldfors A. A novel MYH2 mutation in family members presenting with congenital myopathy, ophthalmoplegia and facial weakness. J Neurol 2016; 263:1427-33. [DOI: 10.1007/s00415-016-8154-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
|
15
|
Martin CL, Singh SM. Identification, modeling, and characterization studies of Tetrahymena thermophila myosin FERM domains suggests a conserved core fold but functional differences. Cytoskeleton (Hoboken) 2015; 72:585-96. [PMID: 26492945 DOI: 10.1002/cm.21261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/05/2022]
Abstract
Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins.
Collapse
Affiliation(s)
- Che L Martin
- Biology Department, the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York, 10016
| | - Shaneen M Singh
- Biology Department, the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York, 10016.,Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Ave. Brooklyn, New York, 11210, USA
| |
Collapse
|
16
|
Cabrera-Serrano M, Fabian VA, Boutilier J, Wise C, Faiz F, Lamont PJ, Laing NG. Adult onset distal and proximal myopathy with complete ophthalmoplegia associated with a novel de novo p.(Leu1877Pro) mutation in MYH2. Clin Genet 2015; 88:573-8. [PMID: 25529940 DOI: 10.1111/cge.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/19/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
An MYH2 mutation p.(Glu706Lys) was originally described in a family with autosomal dominant inheritance, where the affected family members presented with multiple congenital contractures and ophthalmoplegia, progressing to a proximal myopathy in adulthood. Another patient with a dominant mutation p.(Leu1870Pro) was described, presenting as a congenital myopathy with ophthalmoplegia. Here, we present a patient with symptoms beginning at age 16 years, of prominent distal but also proximal weakness, bulbar involvement and ophthalmoplegia. Initially, clinically classified as oculopharyngodistal myopathy, the patient was found to carry a novel, de novo MYH2 mutation c.5630T>C p.(Leu1877Pro). This expands the phenotype of dominant MYH2 myopathies with the clinical phenotype overlapping the oculopharyngodistal myopathy spectrum.
Collapse
Affiliation(s)
- M Cabrera-Serrano
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - V A Fabian
- Section of Neuropathology, Department of Anatomical Pathology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - J Boutilier
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - C Wise
- Department of Diagnostic Genomics, Pathwest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - F Faiz
- Department of Diagnostic Genomics, Pathwest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - P J Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - N G Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. ACTA ACUST UNITED AC 2014; 138:246-68. [PMID: 25552303 DOI: 10.1093/brain/awu368] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The congenital myopathies are a diverse group of genetic skeletal muscle diseases, which typically present at birth or in early infancy. There are multiple modes of inheritance and degrees of severity (ranging from foetal akinesia, through lethality in the newborn period to milder early and later onset cases). Classically, the congenital myopathies are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. However, mutations in multiple different genes can cause the same pathology and mutations in the same gene can cause multiple different pathologies. This is becoming ever more apparent now that, with the increasing use of next generation sequencing, a genetic diagnosis is achieved for a greater number of patients. Thus, considerable genetic and pathological overlap is emerging, blurring the classically established boundaries. At the same time, some of the pathophysiological concepts underlying the congenital myopathies are moving into sharper focus. Here we explore whether our emerging understanding of disease pathogenesis and underlying pathophysiological mechanisms, rather than a strictly gene-centric approach, will provide grounds for a different and perhaps complementary grouping of the congenital myopathies, that at the same time could help instil the development of shared potential therapeutic approaches. Stemming from recent advances in the congenital myopathy field, five key pathophysiology themes have emerged: defects in (i) sarcolemmal and intracellular membrane remodelling and excitation-contraction coupling; (ii) mitochondrial distribution and function; (iii) myofibrillar force generation; (iv) atrophy; and (v) autophagy. Based on numerous emerging lines of evidence from recent studies in cell lines and patient tissues, mouse models and zebrafish highlighting these unifying pathophysiological themes, here we review the congenital myopathies in relation to these emerging pathophysiological concepts, highlighting both areas of overlap between established entities, as well as areas of distinction within single gene disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carsten G Bönnemann
- 2 National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Centre, Bethesda, MD, USA
| |
Collapse
|