1
|
Li A, Pike ACW, Webster R, Maxwell S, Liu WW, Chi G, Palace J, Beeson D, Sauer DB, Dong YY. Structures of the human adult muscle-type nicotinic receptor in resting and desensitized states. Cell Rep 2025; 44:115581. [PMID: 40252219 DOI: 10.1016/j.celrep.2025.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/21/2025] Open
Abstract
Muscle-type nicotinic acetylcholine receptor (AChR) is the key signaling molecule in neuromuscular junctions. Here, we present the structures of full-length human adult receptors in complex with Fab35 in α-bungarotoxin (αBuTx)-bound resting states and ACh-bound desensitized states. In addition to identifying the conformational changes during recovery from desensitization, we also used electrophysiology to probe the effects of eight previously unstudied AChR genetic variants found in patients with congenital myasthenic syndrome (CMS), revealing they cause either slow- or fast-channel CMS characterized by prolonged or abbreviated ion channel bursts. The combined kinetic and structural data offer a better understanding of both the AChR state transition and the pathogenic mechanisms of disease variants.
Collapse
Affiliation(s)
- Anna Li
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK; Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK.
| | - Ashley C W Pike
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Richard Webster
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - Susan Maxwell
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - Wei-Wei Liu
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK; Neurology Department, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Yin Yao Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
2
|
Boon HTM, Jacobs B, Wouter VR, Kamsteeg EJ, Kuks JBM, Vincent A, Eymard B, Voermans NC. Slow Channel Syndrome Revisited: 40 Years Clinical Follow-Up and Genetic Characterization of Two Cases. J Neuromuscul Dis 2022; 9:525-532. [PMID: 35466948 DOI: 10.3233/jnd-220798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The slow channel syndrome is a rare hereditary disorder caused by a dominant gain-of-function variant in one of the subunits of the acetylcholine receptor at the neuromuscular junction. Patients typically experience axial, limb and particularly extensor finger muscle weakness. OBJECTIVE Age at diagnosis is variable and although the long-term prognosis is important for newly diagnosed patients, extensive follow-up studies are rare. We aim to provide answers and perspective for this patient group by presenting an elaborate description of the lifetime follow-up of two slow channel syndrome patients. METHODS We describe 40 years follow-up in two, genetically confirmed cases (CHRNA1; c.866G > T p.(Ser289Ile)(legacy Ser269Ile) and CHRNE; c.721C > T p.(Leu241Phe)(legacy Leu221Phe) variants). RESULTS We find that the disease course has a fluctuating pattern and is only mildly progressive. However, hormonal imbalances, (psychological) stress or excessive hot or cold environments are often aggravating factors. Quinidine and fluoxetine are helpful, but ephedrine and salbutamol may also improve symptoms. CONCLUSION Slow channel syndrome is mildly progressive with a fluctuating pattern. The observations reported here provide a lifespan perspective and answers to the most pressing questions about prognosis and treatment options for newly diagnosed patients.
Collapse
Affiliation(s)
- Helena T M Boon
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - van Rheenen Wouter
- Department of Neurology, University Medical Centre Utrecht, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan B M Kuks
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Krenn M, Grisold A, Wohlfarth P, Rath J, Cetin H, Koneczny I, Zimprich F. Pathomechanisms and Clinical Implications of Myasthenic Syndromes Exacerbated and Induced by Medical Treatments. Front Mol Neurosci 2020; 13:156. [PMID: 32922263 PMCID: PMC7457047 DOI: 10.3389/fnmol.2020.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Myasthenic syndromes are typically characterized by muscle weakness and increased fatigability due to an impaired transmission at the neuromuscular junction (NMJ). Most cases are caused by acquired autoimmune conditions such as myasthenia gravis (MG), typically with antibodies against the acetylcholine receptor (AChR). Different drugs are among the major factors that may complicate pre-existing autoimmune myasthenic conditions by further impairing transmission at the NMJ. Some clinical observations are substantiated by experimental data, indicating that presynaptic, postsynaptic or more complex pathomechanisms at the NMJ may be involved, depending on the individual compound. Most robust data exist for the risks associated with some antibiotics (e.g., aminoglycosides, ketolides, fluoroquinolones) and cardiovascular medications (e.g., class Ia antiarrhythmics, beta blockers). Apart from primarily autoimmune-mediated disorders of the NMJ, de novo myasthenic manifestations may also be triggered by medical treatments that induce an autoimmune reaction. Most notably, there is growing evidence that the immune checkpoint inhibitors (ICI), a modern class of drugs to treat various malignancies, represent a relevant risk factor to develop severe and progressive medication-induced myasthenia via an immune-mediated mechanism. From a clinical perspective, it is of utmost importance for the treating physicians to be aware of such adverse treatment effects and their consequences. In this article, we aim to summarize existing evidence regarding the key molecular and immunological mechanisms as well as the clinical implications of medication-aggravated and medication-induced myasthenic syndromes.
Collapse
Affiliation(s)
- Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Philipp Wohlfarth
- Division of Blood and Marrow Transplantation, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Jakob Rath
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Inga Koneczny
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Gisselmann G, Alisch D, Welbers-Joop B, Hatt H. Effects of Quinine, Quinidine and Chloroquine on Human Muscle Nicotinic Acetylcholine Receptors. Front Pharmacol 2018; 9:1339. [PMID: 30515099 PMCID: PMC6255974 DOI: 10.3389/fphar.2018.01339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/30/2018] [Indexed: 11/24/2022] Open
Abstract
The genus Cinchona is known for a range of alkaloids, such as quinine, quinidine, cinchonine, and cinchonidine. Cinchona bark has been used as an antimalarial agent for more than 400 years. Quinine was first isolated in 1820 and is still acknowledged in the therapy of chloroquine-resistant falciparum malaria; in lower dosage quinine has been used as treatment for leg cramps since the 1940s. Here we report the effects of the quinoline derivatives quinine, quinidine, and chloroquine on human adult and fetal muscle nicotinic acetylcholine receptors (nAChRs). It could be demonstrated that the compounds blocked acetylcholine (ACh)-evoked responses in Xenopus laevis oocytes expressing the adult nAChR composed of αβ𝜀δ subunits in a concentration-dependent manner, with a ranked potency of quinine (IC50 = 1.70 μM), chloroquine (IC50 = 2.22 μM) and quinidine (IC50 = 3.96 μM). At the fetal nAChR composed of αβγδ subunits, the IC50 for quinine was found to be 2.30 μM. The efficacy of the block by quinine was independent of the ACh concentration. Therefore, quinine is proposed to inhibit ACh-evoked currents in a non-competitive manner. The present results add to the pharmacological characterization of muscle nAChRs and indicate that quinine is effective at the muscular nAChRs close to therapeutic blood concentrations required for the therapy and prophylaxis of nocturnal leg cramps, suggesting that the clinically proven efficacy of quinine could be based on targeting nAChRs.
Collapse
Affiliation(s)
- Günter Gisselmann
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Desiree Alisch
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| |
Collapse
|
5
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes (CMSs) form a heterogeneous group of genetic diseases characterized by a dysfunction of neuromuscular transmission because of mutations in numerous genes. This review will focus on the causative genes recently identified and on the therapy of CMSs. RECENT FINDINGS Advances in exome sequencing allowed the discovery of a new group of genes that did not code for the known molecular components of the neuromuscular junction, and the definition of a new group of glycosylation-defective CMS. Rather than the specific drugs used, some of them having been known for decades, it is the rigorous therapeutic strategy that is now offered to the patient in relation to the identified mutated gene that is novel and promising. SUMMARY In addition to the above main points, we also present new data on the genes that were already known with an emphasis on the clinic and on animal models that may be of use to understand the pathophysiology of the disease. We also stress not only the diagnosis difficulties between congenital myopathies and CMSs, but also the continuum that may exist between the two.
Collapse
|