1
|
Weterman MAJ, Bronk M, Jongejan A, Hoogendijk JE, Krudde J, Karjosukarso D, Goebel HH, Aronica E, Jöbsis GJ, van Ruissen F, van Spaendonck-Zwarts KY, de Visser M, Baas F. Pathogenic variants in three families with distal muscle involvement. Neuromuscul Disord 2023; 33:58-64. [PMID: 36539320 DOI: 10.1016/j.nmd.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Three families suspected of distal hereditary motor neuropathy underwent genetic screening with the aim to identify the molecular defect underlying the disease. The description of the identification reflects the shift in molecular diagnostics that was made during the last decades. Our candidate gene approach yielded a known pathogenic variant in BSCL2 (p.Asn88Ser) in one family, and via a CMT-capture, in HSPB1 (p.Arg127Trp), in addition to five other variations in Charcot-Marie-Tooth-related genes in the proband of the second family. In the third family, using whole exome sequencing, followed by linkage-by-location, a three base pair deletion in exon 33 of MYH7 (p.Glu1508del) was found, a reported pathogenic allele albeit for a myopathy. After identification of the causative molecular defect, cardiac examination was performed for patients of the third family and this demonstrated abnormalities in three out of five affected family members. Heterogeneity and expansion of clinical phenotypes beyond known characteristics requires a wider set of genes to be screened. Whole exome/genome analysis with limited prior clinical information may therefore be used to precede a detailed clinical evaluation in cases of large families, preventing screening of a too narrow set of genes, and enabling the identification of novel disease-associated genes. In our cases, the variants had been reported, and co-segregation analysis confirmed the molecular diagnosis.
Collapse
Affiliation(s)
- Marian A J Weterman
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands.
| | - Marieke Bronk
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Bio-informatics, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Jessica E Hoogendijk
- Department of Neurology, UMC Brain Center, University Medical Center, Utrecht, the Netherlands
| | - Judith Krudde
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Dyah Karjosukarso
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hans H Goebel
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Pathology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - G Joost Jöbsis
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Fred van Ruissen
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Marianne de Visser
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Frank Baas
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands
| |
Collapse
|
2
|
Ng KWP, Chin HL, Chin AXY, Goh DLM. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol 2022; 13:997551. [PMID: 36313509 PMCID: PMC9602396 DOI: 10.3389/fneur.2022.997551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023] Open
Abstract
The diagnosis of inherited neuromuscular disorders is challenging due to their genetic and phenotypic variability. Traditionally, neurophysiology and histopathology were primarily used in the initial diagnostic approach to these conditions. Sanger sequencing for molecular diagnosis was less frequently utilized as its application was a time-consuming and cost-intensive process. The advent and accessibility of next-generation sequencing (NGS) has revolutionized the evaluation process of genetically heterogenous neuromuscular disorders. Current NGS diagnostic testing approaches include gene panels, whole exome sequencing (WES), and whole genome sequencing (WGS). Gene panels are often the most widely used, being more accessible due to availability and affordability. In this mini-review, we describe the benefits and risks of clinical genetic testing. We also discuss the utility, benefits, challenges, and limitations of using gene panels in the evaluation of neuromuscular disorders.
Collapse
Affiliation(s)
- Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Denise Li-Meng Goh
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Atemin S, Todorov T, Maver A, Chamova T, Georgieva B, Tincheva S, Pacheva I, Ivanov I, Taneva A, Zlatareva D, Tournev I, Guergueltcheva V, Gospodinova M, Chochkova L, Peterlin B, Mitev V, Todorova A. MYH7-related disorders in two Bulgarian families: Novel variants in the same region associated with different clinical manifestation and disease penetrance. Neuromuscul Disord 2021; 31:633-641. [PMID: 34053846 DOI: 10.1016/j.nmd.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Pathogenic variants in MYH7 cause a wide range of cardiac and skeletal muscle diseases with childhood or adult onset. These include dilated and/or hypertrophic cardiomyopathy, left ventricular non-compaction cardiomyopathy, congenital myopathies with multi-minicores and myofiber type disproportion, myosin storage myopathy, Laing distal myopathy and others (scapulo-peroneal or limb-girdle muscle forms). Here we report the results from molecular genetic analyses (NGS and Sanger sequencing) of 4 patients in two families with variable neuromuscular phenotypes with or without cardiac involvement. Interestingly, variants in MYH7 gene appeared to be the cause in all the cases. A novel nonsense variant c.5746C>T, p.(Gln1916Ter) was found in the patient in Family 1 who deceased at the age of 2 years 4 months with the clinical diagnosis of dilated cardiomyopathy, whose father died before the age of 40 years, due to cardiac failure with clinical diagnosis of suspected limb-girdle muscular dystrophy. A splice acceptor variant c.5560-2A>C in MYH7 was detected in the second proband and her sister, with late onset distal myopathy without cardiac involvement. These different phenotypes (muscular involvement with severe cardiomyopathy and pure late onset neuromuscular phenotype without heart involvement) may result from novel MYH7 variants, which most probably impact the LMM (light meromyosin) domain's function of the mature protein.
Collapse
Affiliation(s)
- Slavena Atemin
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria.
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ales Maver
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Teodora Chamova
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Bilyana Georgieva
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Savina Tincheva
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ani Taneva
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Dora Zlatareva
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| | | | | | - Lyubov Chochkova
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| |
Collapse
|
4
|
Muelas N, Frasquet M, Más-Estellés F, Martí P, Martínez-Vicente L, Sevilla T, Azorín I, Poyatos-García J, Argente-Escrig H, Vílchez R, Vázquez-Costa JF, Bataller L, Vilchez JJ. A study of the phenotypic variability and disease progression in Laing myopathy through the evaluation of muscle imaging. Eur J Neurol 2020; 28:1356-1365. [PMID: 33151602 DOI: 10.1111/ene.14630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Laing myopathy is characterized by broad clinical and pathological variability. They are limited in number and protocol of study. We aimed to delineate muscle imaging profiles and validate imaging analysis as an outcome measure. METHODS This was a cross-sectional and longitudinal cohort study. Data from clinical, functional and semi-quantitative muscle imaging (60 magnetic resonance imaging [MRI] and six computed tomography scans) were studied. Hierarchical analysis, graphic heatmap representation and correlation between imaging and clinical data using Bayesian statistics were carried out. RESULTS The study cohort comprised 42 patients from 13 families harbouring five MYH7 mutations. The cohort had a wide range of ages, age at onset, disease duration, and myopathy extension and Gardner-Medwin and Walton (GMW) functional scores. Intramuscular fat was evident in all but two asymptomatic/pauci-symptomatic patients. Anterior leg compartment muscles were the only affected muscles in 12% of the patients. Widespread extension to the thigh, hip, paravertebral and calf muscles and, less frequently, the scapulohumeral muscles was commonly observed, depicting distinct patterns and rates of progression. Foot muscles were involved in 40% of patients, evolving in parallel to other regions with absence of a disto-proximal gradient. Whole cumulative imaging score, ranging from 0 to 2.9 out of 4, was associated with disease duration and with myopathy extension and GMW scales. Follow-up MRI studies in 24 patients showed significant score progression at a variable rate. CONCLUSIONS We confirmed that the anterior leg compartment is systematically affected in Laing myopathy and may represent the only manifestation of this disorder. However, widespread muscle involvement in preferential but variable and not distance-dependent patterns was frequently observed. Imaging score analysis is useful to categorize patients and to follow disease progression over time.
Collapse
Affiliation(s)
- Nuria Muelas
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain
| | - Marina Frasquet
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Fernando Más-Estellés
- Ascires, Neuroradiology Section, Área Clínica de Imagen Médica, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Pilar Martí
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain
| | - Laura Martínez-Vicente
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Inmaculada Azorín
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain
| | - Javier Poyatos-García
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Herminia Argente-Escrig
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Roger Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain
| | - Juan F Vázquez-Costa
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Luis Bataller
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Juan J Vilchez
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U763, Valencia, Spain
| |
Collapse
|
5
|
Picchiarelli G, Dupuis L. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress 2020; 4:76-91. [PMID: 32292882 PMCID: PMC7146060 DOI: 10.15698/cst2020.04.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of neuromuscular and muscular diseases, including amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several myopathies, are associated to mutations in related RNA-binding proteins (RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor similar modular primary sequence with RNA binding motifs and low complexity domains, that enables them to phase separate and create liquid microdomains. These RBPs have been shown to critically regulate multiple events of RNA lifecycle, including transcriptional events, splicing and RNA trafficking and sequestration. Here, we review the roles of these disease-related RBPs in muscle and motor neurons, and how their dysfunction in these cell types might contribute to disease.
Collapse
Affiliation(s)
- Gina Picchiarelli
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| |
Collapse
|
6
|
Lee HCH, Lau WL, Ko CH, Lee KC, Cheng FY, Wong S, Woo YH, Mak CM. Flexi-Myo Panel Strategy: Genomic Diagnoses of Myopathies and Muscular Dystrophies by Next-Generation Sequencing. Genet Test Mol Biomarkers 2019; 24:99-104. [PMID: 30907627 DOI: 10.1089/gtmb.2018.0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims: Muscle disorders are clinically and genetically heterogeneous. Investigations, including plasma creatine kinase, electromyography, and nerve conduction velocity studies are often nonspecific, whereas muscle biopsy might be limited by sampling bias and variable histopathology. Next-generation sequencing is now generally considered an important diagnostic tool for muscle disorders, with decreased costs and improved diagnostic yield. Inclusion of a large number of genes in the analysis might, however, generate a large number of ambiguous results and create unnecessary confusion for clinicians and patients. Methods: An ethnic Chinese patient presented at age 10 with tip-toe walking. Upon examination the patient had a waddling gait, a tight Achilles tendon with pes cavus. A muscle biopsy showed the presence of minicores with disruption of the myofibrillary network and Z-bands. Sequencing was performed using the Flexi-Myo panel, which provides coverage for 85 myopathic genes. Reporting of sequencing results was decided by the responsible chemical pathologists based on the available clinical and genetic information. Results: A previously identified heterozygous in-frame deletion was detected in MYH7, which confirmed the diagnosis of Laing myopathy. No variants of uncertain significance required reporting. Conclusion: We describe the effectiveness of our Flexi-Myo panel approach for the diagnosis of muscle disorders, which confirmed diagnosis of Laing myopathy in what had been a clinically ambiguous presentation. This approach enables efficient genomic testing for muscle diseases in adults and children with satisfactory diagnostic yield and sufficient sensitivity, whereas avoiding the reporting of ambiguous results. Similar strategies might also be implemented for other groups of disorders.
Collapse
Affiliation(s)
| | - Wai-Ling Lau
- Department of Paediatrics and Adolescent Medicine, Caritas Medical Centre, Hong Kong, China
| | - Chun-Hung Ko
- Department of Paediatrics and Adolescent Medicine, Caritas Medical Centre, Hong Kong, China
| | - Kam-Cheong Lee
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Fung-Yip Cheng
- Department of Clinical Pathology, Caritas Medical Centre, Hong Kong, China
| | - Shun Wong
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China.,Pathology Department, St. Paul's Hospital, Hong Kong, China
| | - Yip-Hin Woo
- Department of Radiology, Caritas Medical Centre, Hong Kong, China
| | - Chloe Miu Mak
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| |
Collapse
|
7
|
Karakaya M, Storbeck M, Strathmann EA, Delle Vedove A, Hölker I, Altmueller J, Naghiyeva L, Schmitz-Steinkrüger L, Vezyroglou K, Motameny S, Alawbathani S, Thiele H, Polat AI, Okur D, Boostani R, Karimiani EG, Wunderlich G, Ardicli D, Topaloglu H, Kirschner J, Schrank B, Maroofian R, Magnusson O, Yis U, Nürnberg P, Heller R, Wirth B. Targeted sequencing with expanded gene profile enables high diagnostic yield in non-5q-spinal muscular atrophies. Hum Mutat 2018; 39:1284-1298. [PMID: 29858556 DOI: 10.1002/humu.23560] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 11/08/2022]
Abstract
Spinal muscular atrophies (SMAs) are a heterogeneous group of disorders characterized by muscular atrophy, weakness, and hypotonia due to suspected lower motor neuron degeneration (LMND). In a large cohort of 3,465 individuals suspected with SMA submitted for SMN1 testing to our routine diagnostic laboratory, 48.8% carried a homozygous SMN1 deletion, 2.8% a subtle mutation, and an SMN1 deletion, whereas 48.4% remained undiagnosed. Recently, several other genes implicated in SMA/LMND have been reported. Despite several efforts to establish a diagnostic algorithm for non-5q-SMA (SMA without deletion or point mutations in SMN1 [5q13.2]), data from large-scale studies are not available. We tested the clinical utility of targeted sequencing in non-5q-SMA by developing two different gene panels. We first analyzed 30 individuals with a small panel including 62 genes associated with LMND using IonTorrent-AmpliSeq target enrichment. Then, additional 65 individuals were tested with a broader panel encompassing up to 479 genes implicated in neuromuscular diseases (NMDs) with Agilent-SureSelect target enrichment. The NMD panel provided a higher diagnostic yield (33%) than the restricted LMND panel (13%). Nondiagnosed cases were further subjected to exome or genome sequencing. Our experience supports the use of gene panels covering a broad disease spectrum for diseases that are highly heterogeneous and clinically difficult to differentiate.
Collapse
Affiliation(s)
- Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Eike A Strathmann
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Janine Altmueller
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Leyla Naghiyeva
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Lea Schmitz-Steinkrüger
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Katharina Vezyroglou
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Salem Alawbathani
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Ayse Ipek Polat
- Dokuz Eylül University, Department of Pediatric Neurology, Izmir, Turkey
| | - Derya Okur
- Dokuz Eylül University, Department of Pediatric Neurology, Izmir, Turkey
| | - Reza Boostani
- Mashhad University of Medical Sciences, Department of Neurology, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran.,Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | | | - Didem Ardicli
- Hacettepe University, Department of Pediatric Neurology, Ankara, Turkey
| | - Haluk Topaloglu
- Hacettepe University, Department of Pediatric Neurology, Ankara, Turkey
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bertold Schrank
- DKD HELIOS Kliniken, Department of Neurology, Wiesbaden, Germany
| | - Reza Maroofian
- Genetics and Molecular Cell Sciences Research Centre, St George's University of London, London, UK
| | | | - Uluc Yis
- Dokuz Eylül University, Department of Pediatric Neurology, Izmir, Turkey
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Raoul Heller
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Bánfai Z, Hadzsiev K, Pál E, Komlósi K, Melegh M, Balikó L, Melegh B. Novel phenotypic variant in the MYH7 spectrum due to a stop-loss mutation in the C-terminal region: a case report. BMC MEDICAL GENETICS 2017; 18:105. [PMID: 28927399 PMCID: PMC5606036 DOI: 10.1186/s12881-017-0463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Background Defects of the slow myosin heavy chain isoform coding MYH7 gene primarily cause skeletal myopathies including Laing Distal Myopathy, Myosin Storage Myopathy and are also responsible for cardiomyopathies. Scapuloperoneal and limb-girdle muscle weakness, congenital fiber type disproportion, multi-minicore disease were also reported in connection of MYH7. Pathogeneses of the defects in the head and proximal rod region of the protein are well described. However, the C-terminal mutations of the MYH7 gene are less known. Moreover, only two articles describe the phenotypic impact of the elongated mature protein product caused by termination signal loss. Case presentation Here we present a male patient with an unusual phenotypic variant of early-onset and predominant involvement of neck muscles with muscle biopsy indicating myopathy and sarcoplasmic storage material. Cardiomyopathic involvements could not be observed. Sequencing of MYH7 gene revealed a stop-loss mutation on the 3-prime end of the rod region, which causes the elongation of the mature protein. Conclusions The elongated protein likely disrupts the functions of the sarcomere by multiple functional abnormalities. This elongation could also affect the thick filament degradation leading to protein deposition and accumulation in the sarcomere, resulting in the severe myopathy of certain axial muscles. The phenotypic expression of the detected novel MYH7 genotype could strengthen and further expand our knowledge about mutations affecting the structure of MyHCI by termination signal loss in the MYH7 gene.
Collapse
Affiliation(s)
- Zsolt Bánfai
- Department of Medical Genetics, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság út 20, Pécs, H-7624, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság út 20, Pécs, H-7624, Hungary
| | - Endre Pál
- Neurology Clinic, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Katalin Komlósi
- Department of Medical Genetics, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság út 20, Pécs, H-7624, Hungary
| | - Márton Melegh
- Department of Medical Genetics, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság út 20, Pécs, H-7624, Hungary
| | - László Balikó
- Department of Neurology, Zala County Hospital, Zrínyi u. 1, Zalaegerszeg, H-8900, Hungary
| | - Béla Melegh
- Department of Medical Genetics, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary. .,Szentágothai Research Centre, University of Pécs, Ifjúság út 20, Pécs, H-7624, Hungary.
| |
Collapse
|
9
|
Bello R, Bertorini T. A Man With Distal Asymmetric Leg Weakness. J Clin Neuromuscul Dis 2017; 18:235-243. [PMID: 28538255 DOI: 10.1097/cnd.0000000000000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
EDUCATIONAL OBJECTIVES To discuss a case of adult-onset asymmetric distal leg weakness in a patient who presented with weakness and atrophy of the posterior compartment of the left leg. KEY QUESTIONS 1. What is the differential diagnosis of asymmetric distal leg weakness?2. How would a clinician approach diagnostic testing for such a patient?3. What is the final diagnosis for this patient?4. How to treat this patient?
Collapse
Affiliation(s)
- Rey Bello
- *Clinical Neurophysiology-EMG/Neuromuscular Diseases, Memphis, TN; and †Department of Neurology, University of Tennessee Health Science Center, Memphis, TN
| | | |
Collapse
|
10
|
Laing distal myopathy with a novel mutation in exon 34 of the MYH7 gene. Neuromuscul Disord 2016; 26:598-603. [DOI: 10.1016/j.nmd.2016.06.458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
|
11
|
Pajusalu S, Talvik I, Noormets K, Talvik T, Põder H, Joost K, Puusepp S, Piirsoo A, Stenzel W, Goebel HH, Nikopensius T, Annilo T, Nõukas M, Metspalu A, Õunap K, Reimand T. De novo exonic mutation in MYH7 gene leading to exon skipping in a patient with early onset muscular weakness and fiber-type disproportion. Neuromuscul Disord 2015; 26:236-9. [PMID: 26782017 DOI: 10.1016/j.nmd.2015.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023]
Abstract
Here we report on a case of MYH7-related myopathy in a boy with early onset of muscular weakness and delayed motor development in infancy. His most affected muscles were neck extensors showing a dropped head sign, proximal muscles of lower limbs with positive Gower's sign, and trunk muscles. Brain and spinal cord MRI scans, echocardiography, and laboratory analyses including creatine kinase and lactate did not reveal any abnormalities. Muscle histopathology showed fiber-type disproportion. Whole exome sequencing of the parents-offspring trio revealed a novel de novo c.5655G>A p.(Ala1885=) synonymous substitution of the last nucleotide in exon 38 of the MYH7 gene. Further RNA investigations proved the skipping of exon 38 (p.1854_1885del). This is a first report of an exon-skipping mutation in the MYH7 gene causing myopathy. This report broadens both the phenotypic and genotypic spectra of MYH7-related myopathies.
Collapse
Affiliation(s)
- Sander Pajusalu
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Tartu, Estonia.
| | - Inga Talvik
- Department of Pediatrics, University of Tartu, Tartu, Estonia; Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Klari Noormets
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Tiina Talvik
- Department of Pediatrics, University of Tartu, Tartu, Estonia; Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Haide Põder
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Kairit Joost
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Sanna Puusepp
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Andres Piirsoo
- Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Tartu, Estonia
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - Hans H Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | | | - Tarmo Annilo
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Margit Nõukas
- Estonian Genome Center, University of Tartu, Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, University of Tartu, Tartu, Estonia
| | - Tiia Reimand
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Tartu, Estonia; Department of Pediatrics, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy. Hum Genome Var 2015; 2:15022. [PMID: 27081534 PMCID: PMC4785580 DOI: 10.1038/hgv.2015.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/24/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
Laing distal myopathy (LDM) is an autosomal dominant myopathy that is caused by mutations in the slow/beta cardiac myosin heavy-chain (MYH7) gene. It has been recently reported that LDM presents with a wide range of clinical manifestations. We herein report a large Chinese family with autosomal dominant myopathy. The affected individuals in the family presented with foot drop in early childhood, along with progressive distal and proximal limb weakness. Their characteristic symptoms include scapular winging and scoliosis in the early disease phase and impairment of ambulation in the advanced phase. Although limb-girdle muscle dystrophy (LGMD) was suspected initially, a definite diagnosis could not be reached. As such, we performed linkage analysis and detected four linkage regions, namely 1q23.2-24.1, 14q11.2-12, 15q26.2-26.3 and 17q24.3. Through subsequent whole exome sequencing, we found a de novo p.K1617del causative mutation in the MYH7 gene and diagnosed the disease as LDM. This is the first LDM case in China. Our patients have severe clinical manifestations that mimic LGMD in comparison with the patients with the same mutation reported elsewhere.
Collapse
|
13
|
Gorokhova S, Biancalana V, Lévy N, Laporte J, Bartoli M, Krahn M. Clinical massively parallel sequencing for the diagnosis of myopathies. Rev Neurol (Paris) 2015; 171:558-71. [PMID: 26022190 DOI: 10.1016/j.neurol.2015.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Massively parallel sequencing, otherwise known as high-throughput or next-generation sequencing, is rapidly gaining wide use in clinical practice due to possibility of simultaneous exploration of multiple genomic regions. More than 300 genes have been implicated in neuromuscular disorders, meaning that many genes need to be considered in a differential diagnosis for a patient affected with myopathy. By providing sequencing information for numerous genes at the same time, massively parallel sequencing greatly accelerates the diagnostic processes of myopathies compared to the classical "gene-after-gene" approach by Sanger sequencing. In this review, we describe multiple advantages of this powerful sequencing method for applications in myopathy diagnosis. We also outline recent studies that used this approach to discover new myopathy-causing genes and to diagnose cohorts of patients with muscular disorders. Finally, we highlight the key aspects and limitations of massively parallel sequencing that a neurologist considering this test needs to know in order to interpret the results of the test and to deal with other issues concerning the test.
Collapse
Affiliation(s)
- S Gorokhova
- Aix Marseille Université, INSERM, GMGF, UMR_S 910, Faculté de Médecine, secteur Timone, 27, boulevard Jean-Moulin, 13385 Marseille cedex, France
| | - V Biancalana
- Laboratoire Diagnostic Génétique, Nouvel Hôpital Civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France; Department of Translational Medicine and Neurogenetics, I.G.B.M.C., INSERM U964, CNRS UMR7104, Strasbourg University, 1, rue Laurent-Fries, 67404 Illkirch, France
| | - N Lévy
- Aix Marseille Université, INSERM, GMGF, UMR_S 910, Faculté de Médecine, secteur Timone, 27, boulevard Jean-Moulin, 13385 Marseille cedex, France; AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France
| | - J Laporte
- Department of Translational Medicine and Neurogenetics, I.G.B.M.C., INSERM U964, CNRS UMR7104, Strasbourg University, 1, rue Laurent-Fries, 67404 Illkirch, France
| | - M Bartoli
- Aix Marseille Université, INSERM, GMGF, UMR_S 910, Faculté de Médecine, secteur Timone, 27, boulevard Jean-Moulin, 13385 Marseille cedex, France; AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France
| | - M Krahn
- Aix Marseille Université, INSERM, GMGF, UMR_S 910, Faculté de Médecine, secteur Timone, 27, boulevard Jean-Moulin, 13385 Marseille cedex, France; AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France.
| |
Collapse
|
14
|
Agrawal PB, Joshi M, Marinakis NS, Schmitz-Abe K, Ciarlini PDSC, Sargent JC, Markianos K, De Girolami U, Chad DA, Beggs AH. Expanding the phenotype associated with the NEFL mutation: neuromuscular disease in a family with overlapping myopathic and neurogenic findings. JAMA Neurol 2015; 71:1413-20. [PMID: 25264603 DOI: 10.1001/jamaneurol.2014.1432] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE Newer sequencing technologies in combination with traditional gene mapping techniques, such as linkage analysis, can help identify the genetic basis of disease for patients with rare disorders of uncertain etiology. This approach may expand the phenotypic spectrum of disease associated with those genetic mutations. OBJECTIVE To elucidate the molecular cause of a neuromuscular disease among a family in which 4 members, a mother and her 3 sons, were affected. DESIGN, SETTING, AND PARTICIPANTS Two of 4 affected members manifested nemaline myopathy, a common subtype of congenital myopathy, while the other 2 had a nonspecific myopathy. Single-nucleotide polymorphism-based linkage analysis was performed on DNA samples from the 4 affected family members, and whole-genome sequencing was performed in the proband. Real-time quantitative reverse transcription-polymerase chain reaction, immunofluorescence, and Western blot analysis were performed on muscle biopsy specimens. MAIN OUTCOMES AND MEASURES Whole-genome sequencing and linkage analysis identified a variant in a gene that explains the phenotype. RESULTS We identified a novel neurofilament light polypeptide (NEFL) nonsense mutation in all affected members. NEFL mutations have been previously linked to Charcot-Marie-Tooth disease in humans. This led us to reevaluate the diagnosis, and we recognized that several of the findings, especially those related to the muscle biopsy specimens and electromyography, were consistent with a neurogenic disease. CONCLUSIONS AND RELEVANCE NEFL mutations are known to cause Charcot-Marie-Tooth disease in humans and motor neuron disease in mice. We report the identification of an NEFL mutation in a family clinically manifesting congenital myopathy. We also describe potential overlap between myopathic and neurogenic findings in this family. These findings expand the phenotypic spectrum of diseases associated with NEFL mutations. This study is an example of the power of genomic approaches to identify potentially pathogenic mutations in unsuspected genes responsible for heterogeneous neuromuscular diseases.
Collapse
Affiliation(s)
- Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts2Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts3Manton Center for Orphan Disease Research
| | - Mugdha Joshi
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts3Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicholas S Marinakis
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts3Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Klaus Schmitz-Abe
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts3Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts4Department of Pathology, Bost
| | - Pedro D S C Ciarlini
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts5Broad Institute, Massachusetts Institute of Technology, Cambridge
| | - Jane C Sargent
- Department of Neurology, University of Massachusetts Medical School, Worcester
| | - Kyriacos Markianos
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts3Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - David A Chad
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts3Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Lefter S, Hardiman O, McLaughlin RL, Murphy SM, Farrell M, Ryan AM. A novel MYH7 Leu1453pro mutation resulting in Laing distal myopathy in an Irish family. Neuromuscul Disord 2015; 25:155-60. [DOI: 10.1016/j.nmd.2014.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/24/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
|