1
|
Cannie DE, Syrris P, Protonotarios A, Bakalakos A, Pruny JF, Ditaranto R, Martinez-Veira C, Larrañaga-Moreira JM, Medo K, Bermúdez-Jiménez FJ, Ben Yaou R, Leturcq F, Mezcua AR, Marini-Bettolo C, Cabrera E, Reuter C, Limeres Freire J, Rodríguez-Palomares JF, Mestroni L, Taylor MRG, Parikh VN, Ashley EA, Barriales-Villa R, Jiménez-Jáimez J, Garcia-Pavia P, Charron P, Biagini E, García Pinilla JM, Bourke J, Savvatis K, Wahbi K, Elliott PM. Emery-Dreifuss muscular dystrophy Type 1 is associated with a high risk of malignant ventricular arrhythmias and end-stage heart failure. Eur Heart J 2023; 44:5064-5073. [PMID: 37639473 PMCID: PMC10733739 DOI: 10.1093/eurheartj/ehad561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND AND AIMS Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterize the cardiac complications of EMD variants. METHODS Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidences in male and female variant-carriers were determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared with consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers [mean (SD) ages 33.4 (13.3) and 43.3 (16.8) years, respectively]. Nine (23.7%) males developed MVA and five (13.2%) developed ESHF during a median (inter-quartile range) follow-up of 65.0 (24.3-109.5) months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median (inter-quartile range) age of 58.6 (53.2-60.4) years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank P = .49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank P = .09). CONCLUSIONS Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.
Collapse
Affiliation(s)
- Douglas E Cannie
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Athanasios Bakalakos
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Jean-François Pruny
- APHP, Sorbonne Université, Centre de Référence pour les Maladies Cardiaques Héréditaires ou rares, ICAN Institute, Hôpital Pitié-Salpêtrière, Paris, France
| | - Raffaello Ditaranto
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - Cristina Martinez-Veira
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC/CIBERCV), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Jose M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC/CIBERCV), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Kristen Medo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francisco José Bermúdez-Jiménez
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria IBS Granada, Granada, Spain
| | - Rabah Ben Yaou
- APHP-Sorbonne Universite, Centre de Référence des Maladies Neuromusculaires, Inserm, Centre de Recherche en Myologie, Institut de Myologie, Hopital Pitie-Salpetriere, Paris, France
| | - France Leturcq
- APHP, Cochin Hospital, Department of Genomic Medicine and Systemic Diseases, University of Paris, Paris, France
| | - Ainhoa Robles Mezcua
- Heart Failure and Familial Cardiomyopathies Unit, Department of Cardiology, IBIMA, Málaga. Spain
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Chiara Marini-Bettolo
- Department of Cardiology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Eva Cabrera
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, CIBERCV, Madrid, Spain
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Javier Limeres Freire
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Inherited Cardiovascular Diseases Unit, Department of Cardiology, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José F Rodríguez-Palomares
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Inherited Cardiovascular Diseases Unit, Department of Cardiology, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Euan A Ashley
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC/CIBERCV), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Juan Jiménez-Jáimez
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria IBS Granada, Granada, Spain
| | - Pablo Garcia-Pavia
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, CIBERCV, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Philippe Charron
- APHP, Sorbonne Université, Centre de Référence pour les Maladies Cardiaques Héréditaires ou rares, ICAN Institute, Hôpital Pitié-Salpêtrière, Paris, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - José M García Pinilla
- Heart Failure and Familial Cardiomyopathies Unit, Department of Cardiology, IBIMA, Málaga. Spain
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Malaga, Malaga, Spain
| | - John Bourke
- Department of Cardiology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Konstantinos Savvatis
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
- William Harvey Institute, Queen Mary University London, London, United Kingdom
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Karim Wahbi
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France
- AP-HP, Cochin Hospital, Cardiology Department, Paris Cedex, France
- Université de Paris, Paris, France; Paris Cardiovascular Research Center (PARCC), INSERM Unit 970, Paris, France
| | - Perry M Elliott
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| |
Collapse
|
2
|
Maggi L, Quijano-Roy S, Bönnemann C, Bonne G. 253rd ENMC international workshop: Striated muscle laminopathies - natural history and clinical trial readiness. 24-26 June 2022, Hoofddorp, the Netherlands. Neuromuscul Disord 2023; 33:498-510. [PMID: 37235886 DOI: 10.1016/j.nmd.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Creteil, France; Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches, France
| | - Carsten Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
3
|
de Las Heras JI, Todorow V, Krečinić-Balić L, Hintze S, Czapiewski R, Webb S, Schoser B, Meinke P, Schirmer EC. Metabolic, fibrotic and splicing pathways are all altered in Emery-Dreifuss muscular dystrophy spectrum patients to differing degrees. Hum Mol Genet 2023; 32:1010-1031. [PMID: 36282542 PMCID: PMC9991002 DOI: 10.1093/hmg/ddac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.
Collapse
Affiliation(s)
| | - Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Lejla Krečinić-Balić
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Yunisova G, Ceylaner S, Oflazer P, Deymeer F, Parman YG, Durmus H. Clinical and genetic characteristics of Emery-Dreifuss muscular dystrophy patients from Turkey: 30 years longitudinal follow-up study. Neuromuscul Disord 2022; 32:718-727. [DOI: 10.1016/j.nmd.2022.07.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
|
5
|
Yanay N, Rabie M, Nevo Y. Impaired Regeneration in Dystrophic Muscle-New Target for Therapy. Front Mol Neurosci 2020; 13:69. [PMID: 32523512 PMCID: PMC7261890 DOI: 10.3389/fnmol.2020.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle stem cells (MuSCs), known as satellite cells (SCs) have an incredible ability to regenerate, which enables the maintenance and growth of muscle tissue. In response to damaging stimuli, SCs are activated, proliferate, differentiate, and fuse to repair or generate a new muscle fiber. However, dystrophic muscles are characterized by poor muscle regeneration along with chronic inflammation and fibrosis. Indications for SC involvement in muscular dystrophy pathologies are accumulating, but their contribution to muscle pathophysiology is not precisely understood. In congenital muscular dystrophy type 1A (LAMA2-CMD), mutations in Lama2 gene cause either complete or partial absence in laminin-211 protein. Laminin-211 functions as a link between muscle extracellular matrix (ECM) and two adhesion systems in the sarcolemma; one is the well-known dystrophin-glycoprotein complex (DGC), and the second is the integrin complex. Because of its protein interactions and location, laminin-211 has a crucial role in muscle function and survival by maintaining sarcolemma integrity. In addition, laminin-211 is expressed in SCs and suggested to have a role in SC proliferation and differentiation. Downstream to the primary defect in laminin-211, several secondary genes and pathways accelerate disease mechanism, while at the same time there are unsuccessful attempts to regenerate as compensation for the dystrophic process. Lately, next-generation sequencing platforms have advanced our knowledge about the secondary events occurring in various diseases, elucidate the pathophysiology, and characterize new essential targets for development of new treatment strategies. This review will mainly focus on SC contribution to impaired regeneration in muscular dystrophies and specifically new findings suggesting SC involvement in LAMA2-CMD pathology.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Kong D, Zhan Y, Liu C, Hu Y, Zhou Y, Luo J, Gu L, Zhou X, Zhang Z. A Novel Mutation Of The EMD Gene In A Family With Cardiac Conduction Abnormalities And A High Incidence Of Sudden Cardiac Death. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:319-327. [PMID: 31802929 PMCID: PMC6827504 DOI: 10.2147/pgpm.s221444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
Abstract
Background Emery-Dreifuss muscular dystrophy, caused by mutations in genes such as emerin (EMD) or lamin A/C (LMNA), is a disorder affecting the joints, muscles, and heart, with a wide spectrum of patient phenotypes including muscle wasting and cardiac conduction defects. Methods and results Here we report a multi-generation family from the Hunan Province of China. Affected family members displayed an uncommon clinical presentation of serious cardiac conduction abnormalities at an early age and a high incidence of sudden cardiac death along with mild skeletal muscular atrophy and joint contracture. Clinical analysis of affected members provided evidence of X-linked recessive inheritance. Consequently, using Sanger sequencing of X chromosome exomes, we identified a novel duplication mutation (c.405dup/p.Asp136X) in the EMD gene as the cause for the disease in this family. This variant is a novel mutation that has not been previously reported in Pubmed, Clinvar or other cases reported in the Human Gene Mutation Database. Conclusion Our finding expands the mutation spectrum of Emery-Dreifuss muscular dystrophy and provides a rationale for EMD mutation testing in cases of X-linked inherited cardiac conduction disease and sudden cardiac death, even in those lacking pathognomonic neuromuscular features.
Collapse
Affiliation(s)
- Demiao Kong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yerong Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangzhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiawen Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lu Gu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiwei Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Bianchi A, Manti PG, Lucini F, Lanzuolo C. Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss Muscular Dystrophy: tous pour un, un pour tous. Nucleus 2019; 9:276-290. [PMID: 29619865 PMCID: PMC5973142 DOI: 10.1080/19491034.2018.1460044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alteration of the several roles that Lamin A/C plays in the mammalian cell leads to a broad spectrum of pathologies that – all together – are named laminopathies. Among those, the Emery Dreifuss Muscular Dystrophy (EDMD) is of particular interest as, despite the several known mutations of Lamin A/C, the genotype–phenotype correlation still remains poorly understood; this suggests that the epigenetic background of patients might play an important role during the time course of the disease. Historically, both a mechanical role of Lamin A/C and a regulative one have been suggested as the driving force of laminopathies; however, those two hypotheses are not mutually exclusive. Recent scientific evidence shows that Lamin A/C sustains the correct gene expression at the epigenetic level thanks to the Lamina Associated Domains (LADs) reorganization and the crosstalk with the Polycomb Group of Proteins (PcG). Furthermore, the PcG-dependent histone mark H3K27me3 increases under mechanical stress, finally pointing out the link between the mechano-properties of the nuclear lamina and epigenetics. Here, we summarize the emerging mechanisms that could explain the high variability seen in Emery Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Andrea Bianchi
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | | | - Federica Lucini
- b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | - Chiara Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy.,c Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
8
|
Bernasconi P, Carboni N, Ricci G, Siciliano G, Politano L, Maggi L, Mongini T, Vercelli L, Rodolico C, Biagini E, Boriani G, Ruggiero L, Santoro L, Schena E, Prencipe S, Evangelisti C, Pegoraro E, Morandi L, Columbaro M, Lanzuolo C, Sabatelli P, Cavalcante P, Cappelletti C, Bonne G, Muchir A, Lattanzi G. Elevated TGF β2 serum levels in Emery-Dreifuss Muscular Dystrophy: Implications for myocyte and tenocyte differentiation and fibrogenic processes. Nucleus 2019; 9:292-304. [PMID: 29693488 PMCID: PMC5973167 DOI: 10.1080/19491034.2018.1467722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Among rare diseases caused by mutations in LMNA gene, Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B are characterized by muscle weakness and wasting, joint contractures, cardiomyopathy with conduction system disorders. Circulating biomarkers for these pathologies have not been identified. Here, we analyzed the secretome of a cohort of patients affected by these muscular laminopathies in the attempt to identify a common signature. Multiplex cytokine assay showed that transforming growth factor beta 2 (TGF β2) and interleukin 17 serum levels are consistently elevated in the vast majority of examined patients, while interleukin 6 and basic fibroblast growth factor are altered in subgroups of patients. Levels of TGF β2 are also increased in fibroblast and myoblast cultures established from patient biopsies as well as in serum from mice bearing the H222P Lmna mutation causing Emery-Dreifuss Muscular Dystrophy in humans. Both patient serum and fibroblast conditioned media activated a TGF β2-dependent fibrogenic program in normal human myoblasts and tenocytes and inhibited myoblast differentiation. Consistent with these results, a TGF β2 neutralizing antibody avoided fibrogenic marker activation and myogenesis impairment. Cell intrinsic TGF β2-dependent mechanisms were also determined in laminopathic cells, where TGF β2 activated AKT/mTOR phosphorylation. These data show that TGF β2 contributes to the pathogenesis of Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B and can be considered a potential biomarker of those diseases. Further, the evidence of TGF β2 pathogenetic effects in tenocytes provides the first mechanistic insight into occurrence of joint contractures in muscular laminopathies.
Collapse
Affiliation(s)
- Pia Bernasconi
- a Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit , Foundation IRCCS Neurological Institute "Carlo Besta" , Milan , Italy
| | - Nicola Carboni
- b Neurology Department , Hospital San Francesco of Nuoro , Nuoro , Italy
| | - Giulia Ricci
- c Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Gabriele Siciliano
- c Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Luisa Politano
- d Cardiomyology and Medical Genetics, Department of Experimental Medicine , Campania University "Luigi Vanvitelli" (former denomination: Second University of Naples) , Italy
| | - Lorenzo Maggi
- a Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit , Foundation IRCCS Neurological Institute "Carlo Besta" , Milan , Italy
| | - Tiziana Mongini
- e Department of Neurosciences "Rita Levi Montalcini" , University of Turin , Turin , Italy
| | - Liliana Vercelli
- e Department of Neurosciences "Rita Levi Montalcini" , University of Turin , Turin , Italy
| | - Carmelo Rodolico
- f Institute of Applied Sciences and Intelligent Systems "ISASI Edoardo Caianello", National Research Council of Italy , Messina , Italy
| | - Elena Biagini
- g Istituto di Cardiologia, Università di Bologna, Policlinico S.Orsola-Malpighi , Bologna , Italy
| | - Giuseppe Boriani
- h Cardiology Division, Department of Diagnostics , Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Policlinico di Modena , Modena , Italy
| | - Lucia Ruggiero
- i Department of Neurosciences , Odontostomatological and Reproductive Sciences, University of Naples "Federico II" , Naples , Italy
| | - Lucio Santoro
- i Department of Neurosciences , Odontostomatological and Reproductive Sciences, University of Naples "Federico II" , Naples , Italy
| | - Elisa Schena
- j Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna , Bologna , Italy.,k Laboratory of Musculoskeletal Cell Biology , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Sabino Prencipe
- j Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna , Bologna , Italy.,k Laboratory of Musculoskeletal Cell Biology , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Camilla Evangelisti
- j Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna , Bologna , Italy.,k Laboratory of Musculoskeletal Cell Biology , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Elena Pegoraro
- l Department of Neurosciences , Neuromuscular Center, University of Padova , Padova , Italy
| | - Lucia Morandi
- a Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit , Foundation IRCCS Neurological Institute "Carlo Besta" , Milan , Italy
| | - Marta Columbaro
- k Laboratory of Musculoskeletal Cell Biology , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Chiara Lanzuolo
- m Istituto Nazionale di Genetica Molecolare "Romeo and Enrica Invernizzi" , Milan , Italy.,n Institute of Cell Biology and Neurobiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Patrizia Sabatelli
- j Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna , Bologna , Italy.,k Laboratory of Musculoskeletal Cell Biology , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Paola Cavalcante
- a Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit , Foundation IRCCS Neurological Institute "Carlo Besta" , Milan , Italy
| | - Cristina Cappelletti
- a Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit , Foundation IRCCS Neurological Institute "Carlo Besta" , Milan , Italy
| | - Gisèle Bonne
- o Sorbonne Universités , UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière , Paris Cedex 13, France
| | - Antoine Muchir
- o Sorbonne Universités , UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière , Paris Cedex 13, France
| | - Giovanna Lattanzi
- j Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna , Bologna , Italy.,k Laboratory of Musculoskeletal Cell Biology , Rizzoli Orthopaedic Institute , Bologna , Italy
| |
Collapse
|
9
|
Abstract
Emery-Dreifuss muscular dystrophy (EDMD), clinically characterized by scapulo-humero-peroneal muscle atrophy and weakness, multi-joint contractures with spine rigidity and cardiomyopathy with conduction defects, is associated with structural/functional defect of genes that encode the proteins of nuclear envelope, including lamin A and several lamin-interacting proteins. This paper presents clinical aspects of EDMD in context to causative genes, genotype-phenotype correlation and its emplacement within phenotypic spectrum of skeletal muscle diseases associated with envelopathies.
Collapse
Affiliation(s)
- Agnieszka Madej-Pilarczyk
- a Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw , Poland
| |
Collapse
|
10
|
Dai X, Zheng C, Chen X, Tang Y, Zhang H, Yan C, Ma H, Li X. Targeted next-generation sequencing identified a known EMD mutation in a Chinese patient with Emery-Dreifuss muscular dystrophy. Hum Genome Var 2019; 6:42. [PMID: 31645980 PMCID: PMC6804839 DOI: 10.1038/s41439-019-0072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a rare X-linked recessive disease characterized by the clinical triad of early childhood joint contractures, progressive weakness in muscles and cardiac involvement and can result in sudden death. Targeted next-generation sequencing was performed for a Chinese patient with EDMD and the previously reported mutation [NM_000117.2: c.251_255del (p.Leu84Profs*7)] in exon 3 of the emerin gene (EMD) was identified.
Collapse
Affiliation(s)
- Xiafei Dai
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Chenqing Zheng
- Shenzhen RealOmics (Biotech) Co., Ltd., 518081 Shenzhen, China
| | - Xuepin Chen
- 2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China.,4ZunYi Medical University, 563000 Zunyi, Guizhou China
| | - Yibin Tang
- 2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Hongmei Zhang
- 2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Chao Yan
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Huihui Ma
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Xiaoping Li
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| |
Collapse
|
11
|
Zhou J, Li H, Li X, Li Y, Yang M, Shi G, Xu D, Shi X. A novel EMD mutation in a Chinese family with initial diagnosis of conduction cardiomyopathy. Brain Behav 2019; 9:e01167. [PMID: 30506906 PMCID: PMC6346415 DOI: 10.1002/brb3.1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/01/2018] [Accepted: 10/27/2018] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Emery-Dreifuss muscular dystrophy (EDMD) is a hereditary myopathy characterized as triad of muscular dystrophy, joint contractures, and conduction cardiomyopathy. In this study, we diagnosed a X-linked recessive EDMD patient with severe conduction cardiomyopathy while noteless muscular and joint disorders. METHODS A Chinese cardiomyopathy family spanning four generations was enrolled in the study. Targeted next-generation sequencing (NGS) was performed to identify the underlying mutation in the proband and validated by Sanger sequencing. Segregation analysis was applied to all 13 participants. RESULTS A novel frameshift mutation (c.253_254insT, p.Y85Lfs*8) of emerin gene (EMD) was found and co-segregated with family members. Other than the typical manifestations of X-linked EDMD, this patient presented inconspicuous muscular disorders which were later diagnosed after the mutation been identified. CONCLUSIONS This study enriches the EMD gene mutation database and reminds us of the possibility of EDMD while encountering patients with severe heart rhythm defects or dilated cardiomyopathy of unknown etiology, even if they have neither obvious skeletal muscle disorder nor joint involvement.
Collapse
Affiliation(s)
- Junfeng Zhou
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yonggui Li
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mei Yang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gaoxing Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Wittig-Blaich S, Wittig R, Schmidt S, Lyer S, Bewerunge-Hudler M, Gronert-Sum S, Strobel-Freidekind O, Müller C, List M, Jaskot A, Christiansen H, Hafner M, Schadendorf D, Block I, Mollenhauer J. Systematic screening of isogenic cancer cells identifies DUSP6 as context-specific synthetic lethal target in melanoma. Oncotarget 2017; 8:23760-23774. [PMID: 28423600 PMCID: PMC5410342 DOI: 10.18632/oncotarget.15863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes. This was facilitated by a novel system for the construction of isogenic constitutive and inducible gain- and loss-of-function cell lines. Additionally, we demonstrate the construction of isogenic cell lines with combinations of the traits for advanced functional in vitro analyses. In a proof-of-concept experiment, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential to identify new drug targets via the identification of the tumor suppressor DUSP6 as potential synthetic lethal target in melanoma cell lines with BRAF V600E mutations and high DUSP6 expression.
Collapse
Affiliation(s)
- Stephanie Wittig-Blaich
- Former Affiliation: Department of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69118 Heidelberg, Germany.,Institute for Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | - Rainer Wittig
- Former Affiliation: Department of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69118 Heidelberg, Germany.,Institute for Laser Technologies in Medicine and Metrology, Ulm University, 89081 Ulm, Germany
| | - Steffen Schmidt
- Former Affiliation: Lundbeckfonden Center of Excellence NanoCAN, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.,Former Affiliation: Molecular Oncology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Stefan Lyer
- Former Affiliation: Department of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69118 Heidelberg, Germany.,Department of Otorhinolaryngology, Section for Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Melanie Bewerunge-Hudler
- Former Affiliation: Department of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69118 Heidelberg, Germany.,Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), 69118 Heidelberg, Germany
| | - Sabine Gronert-Sum
- Former Affiliation: Department of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69118 Heidelberg, Germany
| | - Olga Strobel-Freidekind
- Former Affiliation: Department of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69118 Heidelberg, Germany
| | - Carolin Müller
- Former Affiliation: Lundbeckfonden Center of Excellence NanoCAN, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.,Former Affiliation: Molecular Oncology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Markus List
- Former Affiliation: Lundbeckfonden Center of Excellence NanoCAN, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.,Former Affiliation: Molecular Oncology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Aleksandra Jaskot
- Former Affiliation: Lundbeckfonden Center of Excellence NanoCAN, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.,Former Affiliation: Molecular Oncology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Helle Christiansen
- Former Affiliation: Lundbeckfonden Center of Excellence NanoCAN, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.,Former Affiliation: Molecular Oncology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Mathias Hafner
- Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Duisburg-Essen, 45147 Essen, Germany and German Cancer Consortium, 69118 Heidelberg, Germany
| | - Ines Block
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark.,Lundbeckfonden Center of Excellence NanoCAN, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence NanoCAN, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.,Molecular Oncology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
13
|
Janin A, Bauer D, Ratti F, Millat G, Méjat A. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis 2017; 12:147. [PMID: 28854936 PMCID: PMC5577761 DOI: 10.1186/s13023-017-0698-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Collapse
Affiliation(s)
- Alexandre Janin
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Delphine Bauer
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Francesca Ratti
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Gilles Millat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Méjat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France. .,CNRS UMR 5310, F-69622, Villeurbanne, France. .,INSERM U1217, F-69622, Villeurbanne, France. .,Nuclear Architecture Team, Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France. .,Groupement Hospitalier Est - Centre de Biologie Est - Laboratoire de Cardiogénétique, 59 Boulevard Pinel, 69677, Bron, France.
| |
Collapse
|
14
|
Le Thanh P, Meinke P, Korfali N, Srsen V, Robson MI, Wehnert M, Schoser B, Sewry CA, Schirmer EC. Immunohistochemistry on a panel of Emery-Dreifuss muscular dystrophy samples reveals nuclear envelope proteins as inconsistent markers for pathology. Neuromuscul Disord 2016; 27:338-351. [PMID: 28214269 PMCID: PMC5380655 DOI: 10.1016/j.nmd.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022]
Abstract
Altered distribution of EDMD-linked proteins is not a general characteristic of EDMD. Tissue-specific proteins exhibit altered distributions in some EDMD patients. Variation in redistributed proteins in EDMD may underlie its clinical variability.
Reports of aberrant distribution for some nuclear envelope proteins in cells expressing a few Emery–Dreifuss muscular dystrophy mutations raised the possibility that such protein redistribution could underlie pathology and/or be diagnostic. However, this disorder is linked to 8 different genes encoding nuclear envelope proteins, raising the question of whether a particular protein is most relevant. Therefore, myoblast/fibroblast cultures from biopsy and tissue sections from a panel of nine Emery–Dreifuss muscular dystrophy patients (4 male, 5 female) including those carrying emerin and FHL1 (X-linked) and several lamin A (autosomal dominant) mutations were stained for the proteins linked to the disorder. As tissue-specific nuclear envelope proteins have been postulated to mediate the tissue-specific pathologies of different nuclear envelopathies, patient samples were also stained for several muscle-specific nuclear membrane proteins. Although linked proteins nesprin 1 and SUN2 and muscle-specific proteins NET5/Samp1 and Tmem214 yielded aberrant distributions in individual patient cells, none exhibited defects through the larger patient panel. Muscle-specific Tmem38A normally appeared in both the nuclear envelope and sarcoplasmic reticulum, but most patient samples exhibited a moderate redistribution favouring the sarcoplasmic reticulum. The absence of striking uniform defects in nuclear envelope protein distribution indicates that such staining will be unavailing for general diagnostics, though it remains possible that specific mutations exhibiting protein distribution defects might reflect a particular clinical variant. These findings further argue that multiple pathways can lead to the generally similar pathologies of this disorder while at the same time the different cellular phenotypes observed possibly may help explain the considerable clinical variation of EDMD.
Collapse
Affiliation(s)
- Phu Le Thanh
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Friedrich-Baur-Institute, Ludwig Maximilian University, Munich, Germany
| | - Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Michael I Robson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald, Greifswald, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Ludwig Maximilian University, Munich, Germany
| | - Caroline A Sewry
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Qahar M, Takuma Y, Mizunoya W, Tatsumi R, Ikeuchi Y, Nakamura M. Semaphorin 3A promotes activation of Pax7, Myf5, and MyoD through inhibition of emerin expression in activated satellite cells. FEBS Open Bio 2016; 6:529-39. [PMID: 27239431 PMCID: PMC4880721 DOI: 10.1002/2211-5463.12050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 02/20/2016] [Indexed: 01/07/2023] Open
Abstract
We previously showed that Semaphorin 3A (Sema3A) expression was induced when quiescent muscle satellite cells were stimulated by hepatocyte growth factor and became activated satellite cells (ASCs). However, how Sema3A regulates genes in the early phase of ASCs remains unclear. In this study, we investigated whether Sema3A signaling can regulate the early phase of ASCs, an important satellite cell stage for postnatal growth, repair, and maintenance of skeletal muscle. We showed that expression of the myogenic proliferation regulatory factors Pax7 and Myf5 was decreased in myoblasts transfected with Sema3A siRNA. These cells failed to activate expression MyoD, another myogenic proliferation regulatory factor, during differentiation. Interestingly, some of the Sema3A-depleted cells did not express Pax7 and MyoD and had enlarged nuclei and very large cytoplasmic areas. We also observed that Pax7 and Myf5 expression was increased in Myc-Sema3A overexpressing myoblasts. BrdU analysis indicated that Sema3A regulated proliferation of ASCs. These findings suggest that Sema3A signaling can modulate expression of Pax7, Myf5, and MyoD. Moreover, we found that expression of emerin, an inner nuclear membrane protein, was regulated by Sema3A signaling. Emerin was identified by positional cloning as the gene responsible for the X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD). In conclusion, our results support a role for Sema3A in maintaining ASCs through regulation, via emerin, of Pax7, Myf5, and MyoD expression.
Collapse
Affiliation(s)
- Mulan Qahar
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yuko Takuma
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| |
Collapse
|
16
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
17
|
Morris GE. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2014; 25:137. [PMID: 25542668 DOI: 10.1016/j.nmd.2014.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK; Institute of Science and Technology in Medicine, Keele University, Keele, UK.
| |
Collapse
|