1
|
Stevens R, Kanazono S, Petesch S, Guo LT, Shelton GD. Dystrophin-Deficient Muscular Dystrophy in Two Male Juvenile Brittanys. J Am Anim Hosp Assoc 2022; 58:292-296. [PMID: 36315862 DOI: 10.5326/jaaha-ms-7255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 06/16/2023]
Abstract
A 6 mo old and a 7 mo old male intact Brittany were presented for progressive exercise intolerance, failure to grow, and dysphagia. Creatine kinase activity was markedly and persistently elevated in both dogs. Based on the neurological examination, clinical signs localized to the neuromuscular system. Electromyography revealed complex repetitive discharges in multiple muscle groups. Immunofluorescence of biopsies confirmed dystrophin-deficient muscular dystrophy. This is the first report describing dystrophin-deficient muscular dystrophy in the Brittany breed. Currently, no specific therapies are available for this form of myopathy. The presence of dystrophin deficiency in the two dogs suggests an inherited myopathy rather than a spontaneous mutation. The location of the dogs in the United States and Japan suggests a wide distribution of this dystrophy and should alert clinicians to the existence of this myopathy in the Brittany breed. A mutation in the DMD gene has not yet been identified.
Collapse
Affiliation(s)
- Rebecca Stevens
- From Burlington Emergency and Veterinary Specialists, Williston, Vermont (R.S.)
| | | | - Scott Petesch
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Matthew J. Ryan Veterinary Hospital, Philadelphia, Pennsylvania (S.P.)
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California (L.T.G., G.D.S.)
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California (L.T.G., G.D.S.)
| |
Collapse
|
2
|
Shelton GD, Minor KM, Vieira NM, Kunkel LM, Friedenberg SG, Cullen JN, Guo LT, Zatz M, Mickelson JR. Tandem duplication within the DMD gene in Labrador retrievers with a mild clinical phenotype. Neuromuscul Disord 2022; 32:836-841. [PMID: 36041985 PMCID: PMC10040250 DOI: 10.1016/j.nmd.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
A form of dystrophinopathy with mild or subclinical neuromuscular signs has been previously reported in a family of Labrador retrievers. Markedly and persistently elevated creatine kinase activity was first noted at 6 months of age. Skeletal muscle biopsies revealed a dystrophic phenotype, with dystrophin non-detectable on western blotting and immunohistochemical staining, and with increased utrophin expression. In this report we demonstrate with western blotting that α-dystroglycan is present at essentially normal levels. Whole genome sequencing has also now revealed an approximately 400kb tandem genomic DNA duplication including exons 2-7 of the DMD gene that was inserted into intron 7 of the wild type gene. Skeletal muscle cDNA from 2 cases contained DMD transcripts as expected from an in-frame properly-spliced exon 2-7 tandem insertion. A similar 5' duplication involving DMD exons 2-7 has been reported in a human family with dilated cardiomyopathy but without skeletal myopathy. This is the 3rd confirmed mutation in the DMD gene in Labrador retrievers.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, LaJolla, CA, USA.
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Natassia M Vieira
- The Division of Genetics and Genomics, Boston Children's Hospital, Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Louis M Kunkel
- The Division of Genetics and Genomics, Boston Children's Hospital, Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, LaJolla, CA, USA
| | - Mayana Zatz
- Human Genome and Stem Cell Center, Biosciences Institute, University of Sao Paulo, Brazil
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
3
|
Shelton GD, Minor KM, Guo LT, Friedenberg SG, Cullen JN, Hord JM, Venzke D, Anderson ME, Devereaux M, Prouty SJ, Handelman C, Campbell KP, Mickelson JR. Muscular dystrophy-dystroglycanopathy in a family of Labrador retrievers with a LARGE1 mutation. Neuromuscul Disord 2021; 31:1169-1178. [PMID: 34654610 PMCID: PMC8963908 DOI: 10.1016/j.nmd.2021.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Alpha-dystroglycan (αDG) is a highly glycosylated cell surface protein with a significant role in cell-to-extracellular matrix interactions in muscle. αDG interaction with extracellular ligands relies on the activity of the LARGE1 glycosyltransferase that synthesizes and extends the heteropolysaccharide matriglycan. Abnormalities in αDG glycosylation and formation of matriglycan are the pathogenic mechanisms for the dystroglycanopathies, a group of congenital muscular dystrophies. Muscle biopsies were evaluated from related 6-week-old Labrador retriever puppies with poor suckling, small stature compared to normal litter mates, bow-legged stance and markedly elevated creatine kinase activities. A dystrophic phenotype with marked degeneration and regeneration, multifocal mononuclear cell infiltration and endomysial fibrosis was identified on muscle cryosections. Single nucleotide polymorphism (SNP) array genotyping data on the family members identified three regions of homozygosity in 4 cases relative to 8 controls. Analysis of whole genome sequence data from one of the cases identified a stop codon mutation in the LARGE1 gene that truncates 40% of the protein. Immunofluorescent staining and western blotting demonstrated the absence of matriglycan in skeletal muscle and heart from affected dogs. Compared to control, LARGE enzyme activity was not detected. This is the first report of a dystroglycanopathy in dogs.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709 United States.
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709 United States
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| | - Jeffrey M Hord
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - David Venzke
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Mary E Anderson
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Megan Devereaux
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Sally J Prouty
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Caryl Handelman
- Veterinary Housecalls of Long Island, Commack, NY 11725 United States
| | - Kevin P Campbell
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| |
Collapse
|
4
|
Fortin JS, Hakim CH, Korte S, Yang NN, Fitzgerald SD, Johnson GC, Smith BF, Duan D. Widespread severe myodegeneration in a compound heterozygote female dog with dystrophin deficiency. Vet Med Sci 2021; 7:654-659. [PMID: 33502125 PMCID: PMC8136971 DOI: 10.1002/vms3.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/02/2020] [Accepted: 01/09/2021] [Indexed: 12/02/2022] Open
Abstract
The University of Missouri (MU) has established a colony of dystrophin‐deficient dogs with a mixed breed background to mirror the variable pathologic effects of dystrophinopathies between persons of a given kindred to further the understanding of the genetic and molecular basis of the variable phenotype; thus to facilitate discovery of an effective therapeutic strategy. Herein we report the phenotype and genotype of a normal‐appearing 10‐month‐old colony female that died suddenly. At necropsy examination, there were reduced skeletal and laryngeal muscle volume and mild dilatation of the oesophagus. Microscopic findings consisted of extensive degeneration and regeneration of the axial skeletal, tongue, oesophageal, and laryngeal muscles that were characterized by considerable central nucleation, individual fibre mineralization and interstitial fibrosis. The myocardial findings were limited to infiltration of adipose cells in the interstitium. The female dog was a compound heterozygote with one X chromosome carrying a point mutation in intron 6 of the dystrophin gene and the other X chromosome carrying a repetitive element insertion in intron 13 of the dystrophin gene. Although the direct cause of death was uncertain, it might likely be due to sudden cardiac death as has been seen in Duchenne muscular dystrophy patients. This case demonstrated dystrophinopathy in female dogs that have no ameliorating normal X chromosome.
Collapse
Affiliation(s)
- Jessica S Fortin
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Scott Korte
- Office of Animal Resources, University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Scott D Fitzgerald
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI, USA
| | - Gayle C Johnson
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Mickelson JR, Minor KM, Guo LT, Friedenberg SG, Cullen JN, Ciavarella A, Hambrook LE, Brenner KM, Helmond SE, Marks SL, Shelton GD. Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D. Skelet Muscle 2021; 11:2. [PMID: 33407862 PMCID: PMC7789357 DOI: 10.1186/s13395-020-00257-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified. METHODS Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis. RESULTS Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents. CONCLUSIONS This first SGCA mutation found in dogs adds to the literature of genetic bases of canine muscular dystrophies and their usefulness as comparative models of human disease.
Collapse
Affiliation(s)
- James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA.
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0709, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA
| | | | | | - Karen M Brenner
- Centre for Animal Referral and Emergency, Collingwood, Victoria, Australia
| | - Sarah E Helmond
- Animal Referral Hospital, Homebush, New South Wales, Australia
| | - Stanley L Marks
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0709, USA
| |
Collapse
|
6
|
Barthélémy I, Calmels N, Weiss RB, Tiret L, Vulin A, Wein N, Peccate C, Drougard C, Beroud C, Deburgrave N, Thibaud JL, Escriou C, Punzón I, Garcia L, Kaplan JC, Flanigan KM, Leturcq F, Blot S. X-linked muscular dystrophy in a Labrador Retriever strain: phenotypic and molecular characterisation. Skelet Muscle 2020; 10:23. [PMID: 32767978 PMCID: PMC7412789 DOI: 10.1186/s13395-020-00239-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Canine models of Duchenne muscular dystrophy (DMD) are a valuable tool to evaluate potential therapies because they faithfully reproduce the human disease. Several cases of dystrophinopathies have been described in canines, but the Golden Retriever muscular dystrophy (GRMD) model remains the most used in preclinical studies. Here, we report a new spontaneous dystrophinopathy in a Labrador Retriever strain, named Labrador Retriever muscular dystrophy (LRMD). Methods A colony of LRMD dogs was established from spontaneous cases. Fourteen LRMD dogs were followed-up and compared to the GRMD standard using several functional tests. The disease causing mutation was studied by several molecular techniques and identified using RNA-sequencing. Results The main clinical features of the GRMD disease were found in LRMD dogs; the functional tests provided data roughly overlapping with those measured in GRMD dogs, with similar inter-individual heterogeneity. The LRMD causal mutation was shown to be a 2.2-Mb inversion disrupting the DMD gene within intron 20 and involving the TMEM47 gene. In skeletal muscle, the Dp71 isoform was ectopically expressed, probably as a consequence of the mutation. We found no evidence of polymorphism in either of the two described modifier genes LTBP4 and Jagged1. No differences were found in Pitpna mRNA expression levels that would explain the inter-individual variability. Conclusions This study provides a full comparative description of a new spontaneous canine model of dystrophinopathy, found to be phenotypically equivalent to the GRMD model. We report a novel large DNA mutation within the DMD gene and provide evidence that LRMD is a relevant model to pinpoint additional DMD modifier genes.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Nadège Calmels
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Laboratoire de Diagnostic Génétique-Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, 1 Place de L'Hôpital, 67091, Strasbourg, France
| | - Robert B Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Adeline Vulin
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Cécile Peccate
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Carole Drougard
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Laboratoire de Génétique Moléculaire, Marseille, France
| | - Nathalie Deburgrave
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Jean-Laurent Thibaud
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Catherine Escriou
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Isabel Punzón
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Luis Garcia
- Université de Versailles Saint-Quentin-en-Yvelines, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Jean-Claude Kaplan
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Kevin M Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - France Leturcq
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Stéphane Blot
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
7
|
Bolduc V, Minor KM, Hu Y, Kaur R, Friedenberg SG, Van Buren S, Guo LT, Glennon JC, Marioni-Henry K, Mickelson JR, Bönnemann CG, Shelton GD. Pathogenic variants in COL6A3 cause Ullrich-like congenital muscular dystrophy in young Labrador Retriever dogs. Neuromuscul Disord 2020; 30:360-367. [PMID: 32439203 PMCID: PMC7292757 DOI: 10.1016/j.nmd.2020.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 01/22/2023]
Abstract
The collagen VI-related muscular dystrophies in people include a broad spectrum of diseases ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Clinical features are attributable to both muscle and connective tissue and include progressive muscle weakness and respiratory failure, hyperlaxity of distal joints, and progressive contracture of large joints. Here we describe two different COL6A3 pathogenic variants in Labrador Retriever dogs that result in autosomal recessive or autosomal dominant congenital myopathies with hyperlaxity of distal joints and joint contracture, similar to the condition in people.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Rupleen Kaur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Samantha Van Buren
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA
| | | | - Katia Marioni-Henry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA.
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA.
| |
Collapse
|
8
|
Wang L, Xu M, Li H, He R, Lin J, Zhang C, Zhu Y. Genotypes and Phenotypes of DMD Small Mutations in Chinese Patients With Dystrophinopathies. Front Genet 2019; 10:114. [PMID: 30833962 PMCID: PMC6388391 DOI: 10.3389/fgene.2019.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/30/2019] [Indexed: 11/17/2022] Open
Abstract
Dystrophinopathies are a group of neuromuscular disorders resulting from mutations in DMD, including Duchenne muscular dystrophy (DMD), intermediate muscular dystrophy (IMD), and Becker muscular dystrophy (BMD). Herein, we present the characteristics of small mutations in Chinese patients with dystrophinopathies, and explore genotype–phenotype correlations. In our cohort, 115 patients with small mutations (18.49% of all patients) were included and DMD mutations were detected by either Sanger (53.91%) or next generation sequencing (46.09%). In total, 106 small mutations were detected, 28 of which (26.42%) had not been reported previously. The most common mutations were nonsense mutations (52.17%), followed by splicing (24.35%), frameshift (17.39%), and missense mutations (5.22%), in addition to a single untranslated region mutation (0.87%). We discovered distinct mutation characteristics in our patients, such as different positional distributions, indicating different exon skipping therapy strategies for small mutations in Chinese patients. Almost all patients (96.51%) with truncating or missense mutations, were covered by triple/double/single-exon skipping therapy; the most frequent single-exon skipping strategy was skipping exon 32, applicable for 8.51% of patients. Furthermore, splicing classification grades were correlated with phenotypes in nonsense mutations (P < 0.001), and serum creatinine levels differed significantly between DMD/IMD and BMD for patients ≤ 16 years old (P = 0.002). These observations can further aid prognostic judgment and guide treatment. In conclusion, the mutation characteristics and genotype–phenotype correlations in Chinese patients with dystrophinopathies and small mutations could provide insights into the molecular mechanisms of pathogenesis, diagnosis, and treatment designs.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Xu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruojie He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinfu Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Zhu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
McAtee BB, Heseltine JC, Guo LT, Willard MD, Shelton GD. Dysphagia and esophageal dysfunction due to dystrophin deficient muscular dystrophy in a male Spanish water spaniel. Vet Q 2018; 38:28-32. [PMID: 29384432 PMCID: PMC6831012 DOI: 10.1080/01652176.2018.1435939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Brigitte B McAtee
- a Department of Small Animal Clinical Sciences , Texas A&M University , College Station , TX , USA
| | - Johanna C Heseltine
- a Department of Small Animal Clinical Sciences , Texas A&M University , College Station , TX , USA
| | - Ling T Guo
- b Comparative Neuromuscular Laboratory , University of California San Diego , La Jolla , CA , USA
| | - Michael D Willard
- a Department of Small Animal Clinical Sciences , Texas A&M University , College Station , TX , USA
| | - G Diane Shelton
- b Comparative Neuromuscular Laboratory , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
10
|
Myotonia congenita in a Labrador Retriever with truncated CLCN1. Neuromuscul Disord 2018; 28:597-605. [DOI: 10.1016/j.nmd.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022]
|
11
|
Bersini S, Gilardi M, Mora M, Krol S, Arrigoni C, Candrian C, Zanotti S, Moretti M. Tackling muscle fibrosis: From molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev 2018. [PMID: 29518415 DOI: 10.1016/j.addr.2018.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle fibrosis represents the end stage consequence of different diseases, among which muscular dystrophies, leading to severe impairment of muscle functions. Muscle fibrosis involves the production of several growth factors, cytokines and proteolytic enzymes and is strictly associated to inflammatory processes. Moreover, fibrosis causes profound changes in tissue properties, including increased stiffness and density, lower pH and oxygenation. Up to now, there is no therapeutic approach able to counteract the fibrotic process and treatments directed against muscle pathologies are severely impaired by the harsh conditions of the fibrotic environment. The design of new therapeutics thus need innovative tools mimicking the obstacles posed by the fibrotic environment to their delivery. This review will critically discuss the role of in vivo and 3D in vitro models in this context and the characteristics that an ideal model should possess to help the translation from bench to bedside of new candidate anti-fibrotic agents.
Collapse
|
12
|
Jeandel A, Garosi LS, Davies L, Guo LT, Salgüero R, Shelton GD. Late-onset Becker-type muscular dystrophy in a Border terrier dog. J Small Anim Pract 2018; 60:514-517. [PMID: 29377139 DOI: 10.1111/jsap.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/02/2017] [Accepted: 09/19/2017] [Indexed: 11/27/2022]
Abstract
A 9-year-old Border terrier was presented to a referral hospital after a 1-year history of progressive stiffness and exercise intolerance. Neurological examination was consistent with a neuromuscular disorder. Serum creatine kinase activity was mildly elevated. A myopathy was suspected based on MRI findings and electrophysiological examination. Muscle histopathology was consistent with a severe non-inflammatory myopathy of a dystrophic type. Immunofluorescence and western blotting confirmed a dystrophinopathy with an 80-kDa truncated dystrophin fragment similar to Becker muscular dystrophy in people. To our knowledge, this is the first description of a late-onset Becker-type muscular dystrophy in a dog, and the first description of a dystrophinopathy in a Border terrier. Muscular dystrophy in dogs should not be ruled out based on late onset clinical signs and only mildly elevated creatine kinase.
Collapse
Affiliation(s)
- A Jeandel
- Davies Veterinary Specialists, Hitchin, Hertfordshire SG5 3HR, UK
| | - L S Garosi
- Davies Veterinary Specialists, Hitchin, Hertfordshire SG5 3HR, UK
| | - L Davies
- Smart Veterinary Clinic, Swansea, Wales SA7 9LH, UK
| | - L T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - R Salgüero
- Davies Veterinary Specialists, Hitchin, Hertfordshire SG5 3HR, UK
| | - G D Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Pelatti MV, Gomes JPA, Vieira NMS, Cangussu E, Landini V, Andrade T, Sartori M, Petrus L, Zatz M. Transplantation of Human Adipose Mesenchymal Stem Cells in Non-Immunosuppressed GRMD Dogs is a Safe Procedure. Stem Cell Rev Rep 2017; 12:448-53. [PMID: 27193781 DOI: 10.1007/s12015-016-9659-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The possibility to treat Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, through cell therapy with mesenchymal stromal cells (MSCs) has been widely investigated in different animal models. However, some crucial questions need to be addressed before starting human therapeutic trials, particularly regarding its use for genetic disorders. How safe is the procedure? Are there any side effects following mesenchymal stem cell transplantation? To address these questions for DMD the best model is the golden retriever muscular dystrophy dog (GRMD), which is the closest model to the human condition displaying a much longer lifespan than other models. Here we report the follow-up of 5 GRMD dogs, which were repeatedly transplanted with human adipose-derived mesenchymal stromal cells (hASC), derived from different donors. Xenogeneic cell transplantation, which was done without immunosuppression, was well tolerated in all animals with no apparent long-term adverse effect. In the present study, we show that repeated heterologous stem-cell injection is a safe procedure, which is fundamental before starting human clinical trials.
Collapse
Affiliation(s)
- M V Pelatti
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - J P A Gomes
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - N M S Vieira
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - E Cangussu
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - V Landini
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - T Andrade
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - M Sartori
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - L Petrus
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - Mayana Zatz
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090.
| |
Collapse
|
14
|
Nunes BG, Loures FV, Bueno HMS, Cangussu EB, Goulart E, Coatti GC, Caldini EG, Condino-Neto A, Zatz M. Immunoglobulin therapy ameliorates the phenotype and increases lifespan in the severely affected dystrophin-utrophin double knockout mice. Eur J Hum Genet 2017; 25:1388-1396. [PMID: 29255177 DOI: 10.1038/s41431-017-0017-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder, caused by mutations in the dystrophin gene, affecting 1:3500-5000 boys worldwide. The lack of dystrophin induces degeneration of muscle cells and elicits an immune response characterized by an intensive secretion of pro-inflammatory cytokines. Immunoglobulins modulate the inflammatory response through several mechanisms and have been widely used as an adjuvant therapy for autoimmune diseases. Here we evaluated the effect of immunoglobulin G (IG) injected intraperitoneally in a severely affected double knockout (dko) mouse model for Duchenne muscular dystrophy. The IG dko treated mice were compared regarding activity rates, survival and histopathology with a control untreated group. Additionally, dendritic cells and naïve lymphocytes from these two groups and WT mice were obtained to study in vitro the role of the immune system associated to DMD pathophysiology. We show that IG therapy significantly enhances activity rate and lifespan of dko mice. It diminishes muscle tissue inflammation by decreasing the expression of costimulatory molecules MHC, CD86 and CD40 and reducing Th1-related cytokines IFN-γ, IL-1β and TNF-α release. IG therapy dampens the effector immune responses supporting the hypothesis according to which the immune response accelerates DMD progression. As IG therapy is already approved by FDA for treating autoimmune disorders, with less side-effects than currently used glucocorticoids, our results may open a new therapeutic option aiming to improve life quality and lifespan of DMD patients.
Collapse
Affiliation(s)
- Bruno Ghirotto Nunes
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Flávio Vieira Loures
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Heloisa Maria Siqueira Bueno
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Erica Baroni Cangussu
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Giuliana Castello Coatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Elia Garcia Caldini
- Department of Pathology, School of Medicine, University of São Paulo, Sao Paulo, SP, Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, SP, Brazil.
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
15
|
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in the DMD gene and loss of the protein dystrophin. The absence of dystrophin leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Despite extensive attempts to develop definitive therapies for DMD, the standard of care remains prednisone, which has only palliative benefits. Animal models, mainly the mdx mouse and golden retriever muscular dystrophy (GRMD) dog, have played a key role in studies of DMD pathogenesis and treatment development. Because the GRMD clinical syndrome is more severe than in mice, better aligning with the progressive course of DMD, canine studies may translate better to humans. The original founder dog for all GRMD colonies worldwide was identified in the early 1980s before the discovery of the DMD gene and dystrophin. Accordingly, analogies to DMD were initially drawn based on similar clinical features, ranging from the X-linked pattern of inheritance to overlapping histopathologic lesions. Confirmation of genetic homology between DMD and GRMD came with identification of the underlying GRMD mutation, a single nucleotide change that leads to exon skipping and an out-of-frame DMD transcript. GRMD colonies have subsequently been established to conduct pathogenetic and preclinical treatment studies. Simultaneous with the onset of GRMD treatment trials, phenotypic biomarkers were developed, allowing definitive characterization of treatment effect. Importantly, GRMD studies have not always substantiated findings from mdx mice and have sometimes identified serious treatment side effects. While the GRMD model may be more clinically relevant than the mdx mouse, usage has been limited by practical considerations related to expense and the number of dogs available. This further complicates ongoing broader concerns about the poor rate of translation of animal model preclinical studies to humans with analogous diseases. Accordingly, in performing GRMD trials, special attention must be paid to experimental design to align with the approach used in DMD clinical trials. This review provides context for the GRMD model, beginning with its original description and extending to its use in preclinical trials.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Mail Stop 4458, College Station, TX, 77843-4458, USA.
| |
Collapse
|
16
|
Fraysse B, Barthélémy I, Qannari EM, Rouger K, Thorin C, Blot S, Le Guiner C, Chérel Y, Hogrel JY. Gait characterization in golden retriever muscular dystrophy dogs using linear discriminant analysis. BMC Musculoskelet Disord 2017; 18:153. [PMID: 28403854 PMCID: PMC5388997 DOI: 10.1186/s12891-017-1494-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs is of limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler and more sensitive evaluation of treatment benefits in this important preclinical model. METHODS Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and 20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulation of the dependent and independent variables produced three distinct models. The ability of each model to detect gait alterations and their pattern change with age was tested using a leave-one-out cross-validation approach. RESULTS Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing a good discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficiently representative of the disease progression. In Model 2, age in months was added as a supplementary dependent variable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%). To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable. This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertaining to 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actual genotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects of immunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect of immunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages of direct statistical analysis with greater sensitivity and more comprehensible data representation. CONCLUSIONS Gait analysis using LDA allows for improved analysis of accelerometry data by applying a decision-making analysis approach to the evaluation of preclinical treatment benefits in GRMD dogs.
Collapse
Affiliation(s)
| | - Inès Barthélémy
- INSERM U955-E10 Biology of the NeuroMuscular System, 94000, Créteil, France.,Université Paris-Est, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.,Faculté de Médecine, 94000, Créteil, France
| | - El Mostafa Qannari
- LUNAM University, ONIRIS, National College of Veterinary Medicine, Food Science, and Engineering, USC "Sensometrics and Chemometrics Laboratory", Nantes, France
| | - Karl Rouger
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Chantal Thorin
- Nutrition and Endocrinology Unit, ONIRIS, National College of Veterinary Medicine, Food Science, and Engineering, Nantes, France
| | - Stéphane Blot
- INSERM U955-E10 Biology of the NeuroMuscular System, 94000, Créteil, France.,Université Paris-Est, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.,Faculté de Médecine, 94000, Créteil, France
| | | | - Yan Chérel
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institute of Myology, Paris, France
| |
Collapse
|
17
|
Ostrovidov S, Shi X, Sadeghian RB, Salehi S, Fujie T, Bae H, Ramalingam M, Khademhosseini A. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Rev Rep 2016; 11:866-84. [PMID: 26323256 DOI: 10.1007/s12015-015-9618-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction & School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Ramin Banan Sadeghian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Christian Medical College Bagayam Campus, Centre for Stem Cell Research, Vellore, 632002, India
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea.
- Division of Biomedical Engineering, Department of Medicine, Harvard Medical School, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Boston, MA, 02139, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
18
|
Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 2016; 17:267-79. [PMID: 26956195 DOI: 10.1038/nrm.2016.7] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Satellite cells are adult myogenic stem cells that repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, their differentiation to produce myoblasts that can reconstitute damaged fibres and their self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulation of satellite cell fate and function can contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne muscular dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration and ageing, and in the context of DMD, is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine.
Collapse
Affiliation(s)
- Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
19
|
Vainzof M, Feitosa L, Canovas M, Ayub-Guerrieri D, Pavanello RDCM, Zatz M. Concordant utrophin upregulation in phenotypically discordant DMD/BMD brothers. Neuromuscul Disord 2016; 26:197-200. [PMID: 26851826 DOI: 10.1016/j.nmd.2016.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/03/2016] [Accepted: 01/15/2016] [Indexed: 11/17/2022]
Abstract
Utrophin expression was investigated in two phenotypically discordant Duchenne muscular dystrophy half-brothers. The youngest was wheelchair-bound at age 9, while his mildly affected older brother was able to walk without difficulties at age 15. DNA analysis revealed an out-of-frame exon 2 duplication in the DMD gene, associated with muscle dystrophin protein deficiency. Utrophin localization and quantity was analyzed and compared in both sibs to verify whether this could explain the milder phenotype of the older brother. Immunofluorescence analysis showed a clear sarcolemmal labeling for utrophin in both of them, which was present in regenerating as well as in mature fibers. On western blot analysis, utrophin amount was increased 3.4 and 3.3 fold respectively, as compared to normal controls, while it was increased 1.7 to 4.0 fold in a group of DMD patients within the typical range of clinical progression. These data are in accordance with our previous observations suggesting no correlation between phenotype severity and utrophin up-regulation or sarcolemmal localization in dystrophinopathies. Finding the protective mechanisms in patients with milder course is of utmost interest to direct therapeutic targets.
Collapse
Affiliation(s)
- Mariz Vainzof
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Leticia Feitosa
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marta Canovas
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Danielle Ayub-Guerrieri
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Rita de Cássia M Pavanello
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Puppy bred to have muscular dystrophy saved by surprise mutation. Nature 2015. [DOI: 10.1038/nature.2015.18784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
22
|
Zatz M, Vieira N, Zucconi E, Pelatti M, Gomes J, Vainzof M, Martins-Bach A, Garcia Otaduy M, Bento dos Santos G, Amaro E, Landini V, Andrade T. A normal life without muscle dystrophin. Neuromuscul Disord 2015; 25:371-4. [DOI: 10.1016/j.nmd.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
|
23
|
|
24
|
Zatz M. Response to: Milder course in Duchenne patients with nonsense mutations and no muscle dystrophin. Neuromuscul Disord 2015; 25:444. [PMID: 25777492 DOI: 10.1016/j.nmd.2015.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mayana Zatz
- Human Genome Research Center, Institute of Genetics and Evolutionary Biology, University of São Paulo, Rua do Matao, 277, Cidade Universitária, São Paulo CEP 05508-900, Brazil.
| |
Collapse
|