1
|
Baille G, Severa G, Verebi C, Carlier RY, Malfatti E. Congenital tubular aggregates myopathy associated with central nervous system involvement: description of a case. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2024; 43:130-133. [PMID: 40017288 PMCID: PMC11978424 DOI: 10.36185/2532-1900-675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 03/01/2025]
Abstract
Tubular aggregate myopathy is a rare neuromuscular condition associated with the presence of myofibers protein accumulations, in the form of dense tubular aggregates. Clinically it is characterized by proximal muscular weakness, exercise-induced cramps, myalgias, and ocular features such as ophthalmoplegia and pupillary abnormalities. The involvement of the central nervous system is rare and not completely elucidated. Variants in STIM1, ORAI1, CASQ1 genes are frequently associated with tubular aggregate myopathy. Here we describe a 35-year-old man who presented neonatal hypotonia, motor delay, seizures, and sensorineural hearing loss. During a SARS-CoV-2 infection at the age of 35, he developed myoclonus, encephalopathy, and marked muscular weakness. A deltoid muscle biopsy revealed the presence of tubular aggregates. Genetic analyses including a Whole Genome sequencing failed to reveal a genetic cause. In conclusion, we enlarge the clinical spectrum of tubular aggregate myopathy associated with central nervous system involvement.
Collapse
Affiliation(s)
| | - Gianmarco Severa
- Université Paris Est, IMRB, INSERM, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Henri Mondor Hospital, France
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche médicale Université, Créteil, France
| | - Camille Verebi
- Service de Médecine Génomique des Maladies de Système et d’Organe, Fédération de Génétique et de Médecine Génomique, APHP, Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - Robert-Yves Carlier
- APHP, Université UVSQ-Paris Saclay, Hôpital Raymond Poincaré, Service de Radiologie, Garches, France
| | - Edoardo Malfatti
- Université Paris Est, IMRB, INSERM, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Henri Mondor Hospital, France
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche médicale Université, Créteil, France
| |
Collapse
|
2
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. J Clin Invest 2024; 134:e170317. [PMID: 38300705 PMCID: PMC10977986 DOI: 10.1172/jci170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.
Collapse
Affiliation(s)
| | - Chaojian Wang
- Department of Medicine
- Duke Cardiovascular Research Center
| | | | | | | | - Eda Yildirim
- Department of Cell Biology
- Duke Cancer Institute, Duke University Medical Center, and
| | - Paul Rosenberg
- Department of Medicine
- Duke Cardiovascular Research Center
- Duke Molecular Physiology Institute, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539279. [PMID: 37205564 PMCID: PMC10187192 DOI: 10.1101/2023.05.03.539279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca 2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle where it is best known for its role in store operated Ca 2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focus on a gain of function mutation that occurs in humans and mice (STIM1 +/D84G mice) where muscles exhibit constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca 2+ transients, SR Ca 2+ content or excitation contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1 +/D84G muscle disrupts nuclear-cytosolic coupling causing severe derangement in nuclear architecture, DNA damage, and altered lamina A associated gene expression. Functionally, we found D84G STIM1 reduced the transfer of Ca 2+ from the cytosol to the nucleus in myoblasts resulting in a reduction of [Ca 2+ ] N . Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca 2+ signaling to nuclear stability in skeletal muscle.
Collapse
|
4
|
Lupi A, Spolaor S, Favero A, Bello L, Stramare R, Pegoraro E, Nobile MS. Muscle magnetic resonance characterization of STIM1 tubular aggregate myopathy using unsupervised learning. PLoS One 2023; 18:e0285422. [PMID: 37155641 PMCID: PMC10166478 DOI: 10.1371/journal.pone.0285422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Congenital myopathies are a heterogeneous group of diseases affecting the skeletal muscles and characterized by high clinical, genetic, and histological variability. Magnetic Resonance (MR) is a valuable tool for the assessment of involved muscles (i.e., fatty replacement and oedema) and disease progression. Machine Learning is becoming increasingly applied for diagnostic purposes, but to our knowledge, Self-Organizing Maps (SOMs) have never been used for the identification of the patterns in these diseases. The aim of this study is to evaluate if SOMs may discriminate between muscles with fatty replacement (S), oedema (E) or neither (N). METHODS MR studies of a family affected by tubular aggregates myopathy (TAM) with the histologically proven autosomal dominant mutation of the STIM1 gene, were examined: for each patient, in two MR assessments (i.e., t0 and t1, the latter after 5 years), fifty-three muscles were evaluated for muscular fatty replacement on the T1w images, and for oedema on the STIR images, for reference. Sixty radiomic features were collected from each muscle at t0 and t1 MR assessment using 3DSlicer software, in order to obtain data from images. A SOM was created to analyze all datasets using three clusters (i.e., 0, 1 and 2) and results were compared with radiological evaluation. RESULTS Six patients with TAM STIM1-mutation were included. At t0 MR assessments, all patients showed widespread fatty replacement that intensifies at t1, while oedema mainly affected the muscles of the legs and appears stable at follow-up. All muscles with oedema showed fatty replacement, too. At t0 SOM grid clustering shows almost all N muscles in Cluster 0 and most of the E muscles in Cluster 1; at t1 almost all E muscles appear in Cluster 1. CONCLUSION Our unsupervised learning model appears to be able to recognize muscles altered by the presence of edema and fatty replacement.
Collapse
Affiliation(s)
- Amalia Lupi
- Institute of Radiology, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Simone Spolaor
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alessandro Favero
- Institute of Radiology, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Roberto Stramare
- Clinical and Translational Advanced Imaging Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Marco Salvatore Nobile
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Venice, Italy
| |
Collapse
|
5
|
Beecher G, Fleming MD, Liewluck T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022; 65:374-390. [PMID: 34985130 DOI: 10.1002/mus.27474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023]
Abstract
The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Ticci C, Cassandrini D, Rubegni A, Riva B, Vattemi G, Matà S, Ricci G, Baldacci J, Guglielmi V, Di Muzio A, Malandrini A, Tonin P, Siciliano G, Federico A, Genazzani AA, Santorelli FM, Merlini L. Expanding the clinical and genetic spectrum of pathogenic variants in STIM1. Muscle Nerve 2021; 64:567-575. [PMID: 34368974 DOI: 10.1002/mus.27391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS Stromal interaction molecule 1 (STIM1) is a reticular Ca2+ sensor composed of a luminal and a cytosolic domain. Autosomal dominant mutations in STIM1 cause tubular aggregate myopathy and Stormorken syndrome or its variant York platelet syndrome. In this study we aimed to expand the features related to new variants in STIM1. METHODS We performed a cross-sectional study of individuals harboring monoallelic STIM1 variants recruited at five tertiary centers involved in a study of inherited myopathies analyzed with a multigene-targeted panel. RESULTS We identified seven individuals (age range, 26-57 years) harboring variants in STIM1, including five novel changes: three located in the EF-hand domain, one in the sterile α motif (SAM) domain, and one in the cytoplasmatic region of the protein. Functional evaluation of the pathogenic variants using a heterologous expression system and measuring store-operated calcium entry demonstrated their causative role and suggested a link of new variants with the clinical phenotype. Muscle contractures, found in three individuals, showed variability in body distribution and in the number of joints involved. Three patients showed cardiac and respiratory involvement. Short stature, hyposplenism, sensorineural hearing loss, hypothyroidism, and Gilbert syndrome were variably observed among the patients. Laboratory tests revealed hyperCKemia in six patients, thrombocytopenia in two patients, and hypocalcemia in one patient. Muscle biopsy showed the presence of tubular aggregates in three patients, type I fiber atrophy in one patient, and nonspecific myopathic changes in two patients. DISCUSSION Our clinical, histological, and molecular data expand the genetic and clinical spectrum of STIM1-related diseases.
Collapse
Affiliation(s)
- Chiara Ticci
- IRCCS Fondazione Stella Maris, Molecular Medicine Laboratory, Pisa, Italy.,AOU Meyer, Florence, Italy
| | - Denise Cassandrini
- IRCCS Fondazione Stella Maris, Molecular Medicine Laboratory, Pisa, Italy
| | - Anna Rubegni
- IRCCS Fondazione Stella Maris, Molecular Medicine Laboratory, Pisa, Italy
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gaetano Vattemi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sabrina Matà
- Careggi University Hospital, Neurology Unit, Florence, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jacopo Baldacci
- IRCCS Fondazione Stella Maris, Molecular Medicine Laboratory, Pisa, Italy.,Kode s.r.l., Pisa, Italy
| | - Valeria Guglielmi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Paola Tonin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Claeys T, Goosens V, Racé V, Theys T, Thal DR, Depuydt CE, Claeys KG. Clinical and muscle MRI features in a family with tubular aggregate myopathy and novel STIM1 mutation. Neuromuscul Disord 2020; 30:709-718. [PMID: 32893083 DOI: 10.1016/j.nmd.2020.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022]
Abstract
Heterozygous mutations in the stromal interaction molecule-1-gene (STIM1) cause a clinical phenotype varying from tubular aggregate myopathy with single or multiple signs of Stormorken syndrome to the full Stormorken phenotype. We identified a novel heterozygous mutation c.325C > T (p.H109Y) in the EF-hand domain of STIM1 in six patients of a large Belgian family, and performed a detailed clinical (N = 6), histopathological (N = 2) and whole-body muscle MRI (N = 3) study. The clinical phenotype was characterized by a slowly progressive, predominant proximal muscle weakness in all patients (100%), and additional exercise-induced myalgia in three (60%). Patients experienced symptom onset between 10 and 20 years, remained ambulatory into late adulthood, showed elevated serum creatine kinase levels and tubular aggregates in type 1 and type 2 fibers on muscle biopsy. Interestingly, jaw contractures and hyperlaxity, as well as non-muscular multisystemic features such as menorrhagia, easy bruising and ichthyosis occurred in one patient, and miosis in another. Whole-body muscle MRI revealed predominant involvement of superficial neck extensors, subscapularis, obliquus abdominis externus, lumbar extensors, rectus femoris, biceps femoris longus, medial head of gastrocnemius and flexor hallucis longus. Our findings in patients with myopathy with tubular aggregates and a STIM1 mutation further support the concept of a continuous spectrum with Stormorken syndrome.
Collapse
Affiliation(s)
- Thomas Claeys
- Department of Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Veerle Goosens
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Valérie Racé
- Centre for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Human Genetics, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dietmar R Thal
- Department of Pathology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Christophe E Depuydt
- Laboratory for Muscle diseases and Neuropathies, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kristl G Claeys
- Department of Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Laboratory for Muscle diseases and Neuropathies, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Böhm J, Laporte J. [Tubular aggregate myopathy and Stormorken syndrome]. Med Sci (Paris) 2018; 34 Hors série n°2:26-31. [PMID: 30418142 DOI: 10.1051/medsci/201834s208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calcium (Ca2+) is an essential regulator for a large number of cellular functions in various tissues and organs, and small disturbances of Ca2+ homeostasis can severely compromise normal physiology. Intracellular Ca2+ balance is mainly controlled by the reticular Ca2+ sensor STIM1 and the plasma membrane Ca2+ channel ORAI1 through a mechanism known as store-operated Ca2+ entry (SOCE). Gain-of-function mutations in STIM1 or ORAI1 cause excessive extracellular Ca2+ influx, resulting in tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). Both disorders are spectra of the same disease and involve muscle weakness, miosis, thrombocytopenia, hyposplenism, ichthyosis, dyslexia, and short stature. Here we summarize the clinical and histological characteristics of both disorders, provide an overview on the genetic causes, and recapitulate the current knowledge on the pathomechanisms leading to the multi-systemic phenotype of tubular aggregate myopathy and Stormorken syndrome.
Collapse
Affiliation(s)
- Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France - Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France - Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France - Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France - Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France - Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France - Université de Strasbourg, Illkirch, France
| |
Collapse
|
9
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
10
|
Borsani O, Piga D, Costa S, Govoni A, Magri F, Artoni A, Cinnante CM, Fagiolari G, Ciscato P, Moggio M, Bresolin N, Comi GP, Corti S. Stormorken Syndrome Caused by a p.R304W STIM1 Mutation: The First Italian Patient and a Review of the Literature. Front Neurol 2018; 9:859. [PMID: 30374325 PMCID: PMC6196270 DOI: 10.3389/fneur.2018.00859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Stormorken syndrome is a rare autosomal dominant disease that is characterized by a complex phenotype that includes tubular aggregate myopathy (TAM), bleeding diathesis, hyposplenism, mild hypocalcemia and additional features, such as miosis and a mild intellectual disability (dyslexia). Stormorken syndrome is caused by autosomal dominant mutations in the STIM1 gene, which encodes an endoplasmic reticulum Ca2+ sensor. Here, we describe the clinical and molecular aspects of a 21-year-old Italian female with Stormorken syndrome. The STIM1 gene sequence identified a c.910C > T transition in a STIM1 allele (p.R304W). The p.R304W mutation is a common mutation that is responsible for Stormorken syndrome and is hypothesized to cause a gain of function action associated with a rise in Ca2+ levels. A review of published STIM1 mutations (n = 50) and reported Stormorken patients (n = 11) indicated a genotype-phenotype correlation with mutations in a coiled coil cytoplasmic domain associated with complete Stormorken syndrome, and other pathological variants outside this region were more often linked to an incomplete phenotype. Our study describes the first Italian patient with Stormorken syndrome, contributes to the genotype/phenotype correlation and highlights the possibility of directly investigating the p.R304W mutation in the presence of a typical phenotype. Highlights- Stormorken syndrome is a rare autosomal dominant disease. - Stormoken syndrome is caused by autosomal dominant mutations in the STIM1 gene. - We present the features of a 21-year-old Italian female with Stormorken syndrome. - Our review of published STIM1 mutations suggests a genotype-phenotype correlation. - The p.R304W mutation should be investigated in the presence of a typical phenotype.
Collapse
Affiliation(s)
- Oscar Borsani
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Piga
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Costa
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Artoni
- A. Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia M Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gigliola Fagiolari
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Giacomo P Comi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Böhm J, Laporte J. Gain-of-function mutations in STIM1 and ORAI1 causing tubular aggregate myopathy and Stormorken syndrome. Cell Calcium 2018; 76:1-9. [PMID: 30243034 DOI: 10.1016/j.ceca.2018.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022]
Abstract
Calcium (Ca2+) is a key regulator for a large number of cellular functions in all kinds of cells, and small disturbances of Ca2+ homeostasis can severely compromise normal physiology in various tissues and organs. A major mechanism controlling Ca2+ homeostasis is store-operated Ca2+ entry (SOCE), which relies on the concerted action of the reticular Ca2+ sensor STIM1 and the plasma membrane Ca2+ channel ORAI1. Gain-of-function mutations in the respective genes induce excessive Ca2+ entry, and cause tubular aggregate myopathy (TAM) and Stormorken syndrome. Both disorders are part of a clinical continuum and involve muscle weakness and additional variably pronounced features including miosis, thrombocytopenia, hyposplenism, ichthyosis, dyslexia, and short stature. Mutations in the reticular Ca2+ buffer calsequestrin (CASQ1) have moreover been associated with the mild end of the TAM/Stormorken syndrome spectrum. Here we review the clinical and histological characteristics of both disorders, provide an overview on the genetic causes, and thereby focus on the pathomechanisms leading to muscle dysfunction and the multi-systemic phenotype of tubular aggregate myopathy and Stormorken syndrome.
Collapse
Affiliation(s)
- Johann Böhm
- Departement of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France.
| | - Jocelyn Laporte
- Departement of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Harris E, Burki U, Marini-Bettolo C, Neri M, Scotton C, Hudson J, Bertoli M, Evangelista T, Vroling B, Polvikoski T, Roberts M, Töpf A, Bushby K, McArthur D, Lochmüller H, Ferlini A, Straub V, Barresi R. Complex phenotypes associated with STIM1 mutations in both coiled coil and EF-hand domains. Neuromuscul Disord 2017. [PMID: 28624464 DOI: 10.1016/j.nmd.2017.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dominant mutations in STIM1 are a cause of three allelic conditions: tubular aggregate myopathy, Stormorken syndrome (a complex phenotype including myopathy, hyposplenism, hypocalcaemia and bleeding diathesis), and a platelet dysfunction disorder, York platelet syndrome. Previous reports have suggested a genotype-phenotype correlation with mutations in the N-terminal EF-hand domain associated with tubular aggregate myopathy, and a common mutation at p.R304W in a coiled coil domain associated with Stormorken syndrome. In this study individuals with STIM1 variants were identified by exome sequencing or STIM1 direct sequencing, and assessed for neuromuscular, haematological and biochemical evidence of the allelic disorders of STIM1. STIM1 mutations were investigated by fibroblast calcium imaging and 3D modelling. Six individuals with STIM1 mutations, including two novel mutations (c.262A>G (p.S88G) and c.911G>A (p.R304Q)), were identified. Extra-neuromuscular symptoms including thrombocytopenia, platelet dysfunction, hypocalcaemia or hyposplenism were present in 5/6 patients with mutations in both the EF-hand and CC domains. 3/6 patients had psychiatric disorders, not previously reported in STIM1 disease. Review of published STIM1 patients (n = 49) confirmed that neuromuscular symptoms are present in most patients. We conclude that the phenotype associated with activating STIM1 mutations frequently includes extra-neuromuscular features such as hypocalcaemia, hypo-/asplenia and platelet dysfunction regardless of mutation domain.
Collapse
Affiliation(s)
- Elizabeth Harris
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Umar Burki
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Judith Hudson
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Marta Bertoli
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Teresinha Evangelista
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bas Vroling
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
| | - Tuomo Polvikoski
- Pathology Department, Royal Victoria Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Roberts
- Neurology Department, Salford Royal Foundation NHS Trust, Stott Lane, Salford M6 8HD, UK
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Daniel McArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
| | - Hanns Lochmüller
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Rita Barresi
- Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4AZ, UK.
| |
Collapse
|
13
|
Noury JB, Böhm J, Peche GA, Guyant-Marechal L, Bedat-Millet AL, Chiche L, Carlier RY, Malfatti E, Romero NB, Stojkovic T. Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation. Neuromuscul Disord 2017; 27:78-82. [DOI: 10.1016/j.nmd.2016.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 12/01/2022]
|
14
|
Garibaldi M, Fattori F, Riva B, Labasse C, Brochier G, Ottaviani P, Sacconi S, Vizzaccaro E, Laschena F, Romero NB, Genazzani A, Bertini E, Antonini G. A novel gain-of-function mutation in ORAI1 causes late-onset tubular aggregate myopathy and congenital miosis. Clin Genet 2016; 91:780-786. [PMID: 27882542 DOI: 10.1111/cge.12888] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022]
Abstract
We present three members of an Italian family affected by tubular aggregate myopathy (TAM) and congenital miosis harboring a novel missense mutation in ORAI1. All patients had a mild, late onset TAM revealed by asymptomatic creatine kinase (CK) elevation and congenital miosis consistent with a Stormorken-like Syndrome, in the absence of thrombocytopathy. Muscle biopsies showed classical histological findings but ultrastructural analysis revealed atypical tubular aggregates (TAs). The whole body muscle magnetic resonance imaging (MRI) showed a similar pattern of muscle involvement that correlated with clinical severity. The lower limbs were more severely affected than the scapular girdle, and thighs were more affected than legs. Molecular analysis revealed a novel c.290C>G (p.S97C) mutation in ORAI1 in all affected patients. Functional assays in both human embryonic kidney (HEK) cells and myotubes showed an increased rate of Ca2+ entry due to a constitutive activation of the CRAC channel, consistent with a 'gain-of-function' mutation. In conclusion, we describe an Italian family harboring a novel heterozygous c.290C>G (p.S97C) mutation in ORAI1 causing a mild- and late-onset TAM and congenital miosis via constitutive activation of the CRAC channel. Our findings extend the clinical and genetic spectrum of the ORAI1-related TAM.
Collapse
Affiliation(s)
- M Garibaldi
- Unit of Neuromuscular Diseases, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, 'Sapienza' University of Rome, Rome, Italy.,Neuromuscular Diseases Centre, Department of Clinical Neurosciences, University Hospital of Nice, Nice, France
| | - F Fattori
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - B Riva
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - C Labasse
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - G Brochier
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - P Ottaviani
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - S Sacconi
- Neuromuscular Diseases Centre, Department of Clinical Neurosciences, University Hospital of Nice, Nice, France
| | - E Vizzaccaro
- Unit of Neuromuscular Diseases, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, 'Sapienza' University of Rome, Rome, Italy
| | - F Laschena
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - N B Romero
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - E Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - G Antonini
- Unit of Neuromuscular Diseases, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, 'Sapienza' University of Rome, Rome, Italy
| |
Collapse
|
15
|
Lee JM, Noguchi S. Calcium Dyshomeostasis in Tubular Aggregate Myopathy. Int J Mol Sci 2016; 17:ijms17111952. [PMID: 27879676 PMCID: PMC5133946 DOI: 10.3390/ijms17111952] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
Calcium is a crucial mediator of cell signaling in skeletal muscles for basic cellular functions and specific functions, including contraction, fiber-type differentiation and energy production. The sarcoplasmic reticulum (SR) is an organelle that provides a large supply of intracellular Ca2+ in myofibers. Upon excitation, it releases Ca2+ into the cytosol, inducing contraction of myofibrils. During relaxation, it takes up cytosolic Ca2+ to terminate the contraction. During exercise, Ca2+ is cycled between the cytosol and the SR through a system by which the Ca2+ pool in the SR is restored by uptake of extracellular Ca2+ via a specific channel on the plasma membrane. This channel is called the store-operated Ca2+ channel or the Ca2+ release-activated Ca2+ channel. It is activated by depletion of the Ca2+ store in the SR by coordination of two main molecules: stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel protein 1 (ORAI1). Recently, myopathies with a dominant mutation in these genes have been reported and the pathogenic mechanism of such diseases have been proposed. This review overviews the calcium signaling in skeletal muscles and role of store-operated Ca2+ entry in calcium homeostasis. Finally, we discuss the phenotypes and the pathomechanism of myopathies caused by mutations in the STIM1 and ORAI1 genes.
Collapse
Affiliation(s)
- Jong-Mok Lee
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8551, Japan.
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8502, Japan.
| | - Satoru Noguchi
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8551, Japan.
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|