1
|
Lillback V, Bergant G, Di Feo MF, Bozović IB, Torella A, Johari M, Maver A, Pelin K, Santorelli FMM, Nigro V, Hackman P, Peterlin B, Udd B, Savarese M. Gene prioritisation for enhancing molecular diagnosis in rare skeletal muscle disease cohort. J Med Genet 2025; 62:350-357. [PMID: 40044418 DOI: 10.1136/jmg-2024-110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/16/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Inherited rare skeletal muscle diseases cause muscle weakness and wasting of variable severity. Without a molecular diagnosis, patients often endure prolonged diagnostic journeys, leading to delays in appropriate management of the disease. This occurs in approximately 60% of patients with rare diseases. METHODS To facilitate reanalysis of 278 unsolved patients, we used a gene prioritisation tool Exomiser, which standardises analysis by ranking causative variants based on phenotype relevance and variant pathogenicity. Before analysis, we benchmarked Exomiser for variant prioritisation with solved cases and for novel disease gene discovery with mock cases with variants in candidate disease genes. Additionally, we studied the significance of the specificity of the phenotype descriptions. RESULTS In our study, Exomiser ranked genes in the top 10 correctly in 97.4% of controls with previously detected causative variants. Moreover, 57.1% of candidate genes in mock cases were similarly prioritised in the top 10. We also showed that three parental muscle disease human phenotype ontologies describing the patient phenotype performed as well as patient-specific ones, with a p value of 0.68 for difference in performance. The provided automation and standardisation of variant interpretation resulted in two novel diagnoses and in findings, either in known muscle disease genes or in novel candidate genes, which need further investigation. CONCLUSIONS Exomiser is recommended for initial and periodic reanalyses of exomes in unsolved patients with myopathy, as it benefits from literature updates and minimises effort. This approach could also extend to whole genome sequencing data, aiding the interpretation of variants beyond coding regions.
Collapse
Affiliation(s)
| | - Gaber Bergant
- University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maria Francesca Di Feo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
| | | | - Annalaura Torella
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli studi della Campania Luigi Vanvitelli, Napoli, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Aleš Maver
- University Medical Centre Ljubljana, Ljubljana, Slovenia
- University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Napoli, Italy
- Department of Precision Medicine, Universita degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | | | - Borut Peterlin
- University Medical Centre Ljubljana, Ljubljana, Slovenia
- University of Ljubljana, Ljubljana, Slovenia
| | - Bjarne Udd
- Neuromuscular Center, Tampere University Hospital, Vasa, Finland
| | | |
Collapse
|
2
|
Gao Y, Peng L, Zhao C. MYH7 in cardiomyopathy and skeletal muscle myopathy. Mol Cell Biochem 2024; 479:393-417. [PMID: 37079208 DOI: 10.1007/s11010-023-04735-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lu Peng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
4
|
Atemin S, Todorov T, Maver A, Chamova T, Georgieva B, Tincheva S, Pacheva I, Ivanov I, Taneva A, Zlatareva D, Tournev I, Guergueltcheva V, Gospodinova M, Chochkova L, Peterlin B, Mitev V, Todorova A. MYH7-related disorders in two Bulgarian families: Novel variants in the same region associated with different clinical manifestation and disease penetrance. Neuromuscul Disord 2021; 31:633-641. [PMID: 34053846 DOI: 10.1016/j.nmd.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Pathogenic variants in MYH7 cause a wide range of cardiac and skeletal muscle diseases with childhood or adult onset. These include dilated and/or hypertrophic cardiomyopathy, left ventricular non-compaction cardiomyopathy, congenital myopathies with multi-minicores and myofiber type disproportion, myosin storage myopathy, Laing distal myopathy and others (scapulo-peroneal or limb-girdle muscle forms). Here we report the results from molecular genetic analyses (NGS and Sanger sequencing) of 4 patients in two families with variable neuromuscular phenotypes with or without cardiac involvement. Interestingly, variants in MYH7 gene appeared to be the cause in all the cases. A novel nonsense variant c.5746C>T, p.(Gln1916Ter) was found in the patient in Family 1 who deceased at the age of 2 years 4 months with the clinical diagnosis of dilated cardiomyopathy, whose father died before the age of 40 years, due to cardiac failure with clinical diagnosis of suspected limb-girdle muscular dystrophy. A splice acceptor variant c.5560-2A>C in MYH7 was detected in the second proband and her sister, with late onset distal myopathy without cardiac involvement. These different phenotypes (muscular involvement with severe cardiomyopathy and pure late onset neuromuscular phenotype without heart involvement) may result from novel MYH7 variants, which most probably impact the LMM (light meromyosin) domain's function of the mature protein.
Collapse
Affiliation(s)
- Slavena Atemin
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria.
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ales Maver
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Teodora Chamova
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Bilyana Georgieva
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Savina Tincheva
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ani Taneva
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Dora Zlatareva
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| | | | | | - Lyubov Chochkova
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| |
Collapse
|
5
|
Abstract
The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.
Collapse
Affiliation(s)
- Katarina Pelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Surikova Y, Filatova A, Polyak M, Skoblov M, Zaklyazminskaya E. Common pathogenic mechanism in patients with dropped head syndrome caused by different mutations in the MYH7 gene. Gene 2019; 697:159-164. [PMID: 30794915 DOI: 10.1016/j.gene.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Mutations in the MYH7 gene are the source of an allelic series of diseases, including various cardiomyopathies and skeletal myopathies that usually manifest in adulthood. We observed a 1.5 y.o. male patient with congenital weaknesses of the axial muscles, "dropped head" syndrome, and dilated cardiomyopathy. The clinical evaluation included medical history, an echocardiogram, electromyography, and a histopathological study. The genetic evaluation included whole exome sequencing. Muscle biopsy samples from the proband were used for mRNA extraction. We revealed a novel genetic variant c.5655 + 5G > C in the MYH7 gene. The analysis of the cDNA showed an in-frame skipping of exon 38 (p.1854_1885del). This variant and two previously published mutations (c.5655G > A and c.5655 + 1G > A), also presumably leading to exon 38 skipping, were studied by expression analysis in the HEK293T cell line transfected with 4 plasmids containing the MYH7 minigene (wt, c.5655G > C, c.5655 + 1G > A and c.5655 + 5G > A). A quantitative difference in expression was shown for cell lines with each of the three mutant plasmids. All mutation carriers had a similar phenotype and included congenital axial myopathy and variable cardiac involvement. Prominent dropped head syndrome was mentioned in all patients. Early-onset axial myopathy with a dropped head syndrome is a distinct clinical entity within MYH7-related disorders. We suggest that mutations in the MYH7 gene affecting the C-terminal domain of beta-myosin heavy chain should also be considered as a possible cause in cases of early-onset myopathy with "dropped head" syndrome.
Collapse
Affiliation(s)
- Yulia Surikova
- Medical Genetics Laboratory, Petrovsky Russian Research Center of Surgery, Moscow 119991, Russia.
| | - Alexandra Filatova
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Margarita Polyak
- Medical Genetics Laboratory, Petrovsky Russian Research Center of Surgery, Moscow 119991, Russia
| | - Mikhail Skoblov
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow 115522, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Elena Zaklyazminskaya
- Medical Genetics Laboratory, Petrovsky Russian Research Center of Surgery, Moscow 119991, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
7
|
Schuelke M, Øien NC, Oldfors A. Myopathology in the times of modern genetics. Neuropathol Appl Neurobiol 2017; 43:44-61. [DOI: 10.1111/nan.12374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/03/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Affiliation(s)
- M. Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center; Charité-Universitätsmedizin; Berlin Germany
| | - N. C. Øien
- Department of Neuropediatrics and NeuroCure Clinical Research Center; Charité-Universitätsmedizin; Berlin Germany
- Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - A. Oldfors
- Department of Pathology and Genetics; Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
8
|
Fiorillo C, Astrea G, Savarese M, Cassandrini D, Brisca G, Trucco F, Pedemonte M, Trovato R, Ruggiero L, Vercelli L, D'Amico A, Tasca G, Pane M, Fanin M, Bello L, Broda P, Musumeci O, Rodolico C, Messina S, Vita GL, Sframeli M, Gibertini S, Morandi L, Mora M, Maggi L, Petrucci A, Massa R, Grandis M, Toscano A, Pegoraro E, Mercuri E, Bertini E, Mongini T, Santoro L, Nigro V, Minetti C, Santorelli FM, Bruno C. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis 2016; 11:91. [PMID: 27387980 PMCID: PMC4936326 DOI: 10.1186/s13023-016-0476-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/22/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Myosin heavy chain 7 (MYH7)-related myopathies are emerging as an important group of muscle diseases of childhood and adulthood, with variable clinical and histopathological expression depending on the type and location of the mutation. Mutations in the head and neck domains are a well-established cause of hypertrophic cardiomyopathy whereas mutation in the distal regions have been associated with a range of skeletal myopathies with or without cardiac involvement, including Laing distal myopathy and Myosin storage myopathy. Recently the spectrum of clinical phenotypes associated with mutations in MYH7 has increased, blurring this scheme and adding further phenotypes to the list. A broader disease spectrum could lead to misdiagnosis of different congenital myopathies, neurogenic atrophy and other neuromuscular conditions. RESULTS As a result of a multicenter Italian study we collected clinical, histopathological and imaging data from a population of 21 cases from 15 families, carrying reported or novel mutations in MYH7. Patients displayed a variable phenotype including atypical pictures, as dropped head and bent spine, which cannot be classified in previously described groups. Half of the patients showed congenital or early infantile weakness with predominant distal weakness. Conversely, patients with later onset present prevalent proximal weakness. Seven patients were also affected by cardiomyopathy mostly in the form of non-compacted left ventricle. Muscle biopsy was consistent with minicores myopathy in numerous cases. Muscle MRI was meaningful in delineating a shared pattern of selective involvement of tibialis anterior muscles, with relative sparing of quadriceps. CONCLUSION This work adds to the genotype-phenotype correlation of MYH7-relatedmyopathies confirming the complexity of the disorder.
Collapse
Affiliation(s)
- C Fiorillo
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy. .,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy.
| | - G Astrea
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - M Savarese
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - D Cassandrini
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - G Brisca
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy.,Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genoa, Italy
| | - F Trucco
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - M Pedemonte
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - R Trovato
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - L Ruggiero
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, Naples, Italy
| | - L Vercelli
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - A D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - G Tasca
- Don Carlo Gnocchi ONLUS Foundation, Rome, Italy
| | - M Pane
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - M Fanin
- Department of Neurosciences, University of Padua, Padua, Italy
| | - L Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - P Broda
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - O Musumeci
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - C Rodolico
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - S Messina
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - G L Vita
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - M Sframeli
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - S Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - L Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - M Mora
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - L Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - A Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, S. Camillo-Forlanini Hospital, Rome, Italy
| | - R Massa
- Department of Systems Medicine (Neurology), University of Tor Vergata, Rome, Italy
| | - M Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy
| | - A Toscano
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - E Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - E Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - E Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - T Mongini
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - L Santoro
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, Naples, Italy
| | - V Nigro
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - C Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy
| | - F M Santorelli
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - C Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|