1
|
Muelas N, Carretero-Vilarroig L, Martí P, Azorín I, Frasquet M, Poyatos-García J, Portela S, Martínez-Vicente L, Argente-Escrig H, Sivera R, Vázquez-Costa JF, Tárrega M, Más-Estellés F, Vílchez R, Bataller L, Aller E, Diago L, Fores-Toribio L, Sevilla T, Vilchez JJ. Clinical features, mutation spectrum and factors related to reaching molecular diagnosis in a cohort of patients with distal myopathies. J Neurol 2025; 272:97. [PMID: 39775307 DOI: 10.1007/s00415-024-12821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Distal myopathies (MPDs) are heterogeneous diseases of complex diagnosis whose prevalence and distribution in specific populations are unknown. METHODS Demographic, clinical, genetic, neurophysiological, histopathological and muscle imaging characteristics of a MPDs cohort from a neuromuscular reference center were analyzed to study their epidemiology, features, genetic distribution and factors related to diagnosis. RESULTS The series included 219 patients (61% were men, 94% Spanish and 41% sporadic cases). Mean age at onset and years of follow-up were 29 and 12.4, respectively. Patients commonly presented with gait disturbances in adulthood and did not usually exhibit a purely distal involvement, but disto-proximal involvement. HyperCKemia was detected in 56.6%, leading to consultation in 11.7%. Myopathic electromyography patterns and spontaneous activity were common; however, neurogenic features were also observed. Muscle imaging was useful for diagnosis as were certain histological features. Suspected pathogenic variants were identified in 68.7% of patients across 19 genes, but 85% concentrated in 8: MYH7, ANO5, DYSF, TTN, MYOT, HSPB1, GNE and HNRNPDL. Founder/cluster variants were found as well as overlap between myopathic and neurogenic processes. Onset before 60 years old, familial cases, very high CK levels and myopathic histopathological features were associated with a higher probability of molecular diagnosis. We found a minimum prevalence of MPDs of 3.9 per 100,000 individuals in the Valencian Community. CONCLUSIONS This series being the largest cohort of patients with MPDs presents their frequency and behavior. This study identifies new genes presenting as MPDs, provides data to guide diagnosis and lays the groundwork for cooperative studies.
Collapse
Affiliation(s)
- Nuria Muelas
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain.
- Department of Medicine, Universitat de València, Valencia, Spain.
| | - Lidón Carretero-Vilarroig
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Cavanilles Institute of Biodiversity and Evolutionary, University of Valencia, Valencia, Spain
| | - Pilar Martí
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| | - Inmaculada Azorín
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| | - Marina Frasquet
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Javier Poyatos-García
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Sofía Portela
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Laura Martínez-Vicente
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Herminia Argente-Escrig
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Rafael Sivera
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
- Department of Medicine, Universidad CEU-Cardenal Herrera, Valencia, Spain
| | - Juan F Vázquez-Costa
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - María Tárrega
- Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Fernando Más-Estellés
- Ascires, Neurorradiology Section, Área Clínica de Imagen Médica, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Roger Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| | - Luis Bataller
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Elena Aller
- Department of Genetics, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U755, Valencia, Spain
| | - Luján Diago
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Lorena Fores-Toribio
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Juan J Vilchez
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| |
Collapse
|
2
|
Panos-Basterra P, Theuriet J, Nadaj-Pakleza A, Magot A, Lannes B, Marcorelles P, Behin A, Masingue M, Caillon F, Malek Y, Fenouil T, Bas J, Menassa R, Michel-Calemard L, Streichenberger N, Simon JP, Bouhour F, Evangelista T, Métay C, Pegat A, Stojkovic T, Fernández-Eulate G. Defining the landscape of TIA1 and SQSTM1 digenic myopathy. Neuromuscul Disord 2024; 42:43-52. [PMID: 39142003 DOI: 10.1016/j.nmd.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
TIA1/SQSTM1 myopathy is one of the few digenic myopathies. We describe four new French adult male patients carrying the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variant and review the literature to include 20 additional cases to define the spectrum of the disease. These twenty-four patients (75% males) had late-onset (52,6 ± 10,1 years), mainly asymmetric, distal ankle and hand finger extension weakness (75%), mild CK elevation (82.4%) and myopathic EMG. Two of the four French patients had sensorimotor axonal polyneuropathy and an additional one had neurogenic changes in muscle biopsy. Muscle biopsy showed rimmed vacuoles (44.4%), myofibrillar disorganization (16.7%) or both (38.9%), with P62/TDP43 aggregates. The TIA1 p.Asn357Ser variant was present in all patients and the SQSTM1 p.Pro392Leu was the most frequent (71%) of the four reported SQSTM1 variants. We reviewed the distal myopathy gene panels of Pitié-Salpêtrière's hospital cohort finding a prevalence of 11/414=2.7% of the TIA1 p.Asn357Ser variant, with two patients having an alternative diagnosis (TTN and MYH7) with atypical phenotypes, resembling some of the features seen in TIA1/SQSTM1 myopathy. Overall, TIA1/SQSTM1 myopathy has a homogenous phenotype reinforcing the pathogenicity of its digenic variants. We confirm an increased burden of the TIA1 p.Asn357Ser variant in distal myopathy patients which could act as a genetic modifier.
Collapse
Affiliation(s)
- Paula Panos-Basterra
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, APHP, 47-83 bd de l'Hôpital, Paris 75013, France; Servicio de Neurología, Hospital de la Princesa, Madrid, Spain
| | - Julian Theuriet
- Service ENMG et de Pathologies Neuromusculaires, Centre de Référence des Maladies Neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils de Lyon, Bron 69500, France; INMG - Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, ERN EURO-NMD, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Armelle Magot
- Centre de Référence des Maladies Neuromusculaires AOC, Laboratoire d'Explorations Fonctionnelles, FILNEMUS, Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Beatrice Lannes
- Département de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pascale Marcorelles
- Département de Pathologie, Hôpital Universitaire de Brest, Brest 29200, France
| | - Anthony Behin
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, APHP, 47-83 bd de l'Hôpital, Paris 75013, France
| | - Marion Masingue
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, APHP, 47-83 bd de l'Hôpital, Paris 75013, France
| | - Florence Caillon
- Service de Radiologie et Imagerie Médicale Hôtel-Dieu, CHU Nantes, Nantes, France
| | - Yannis Malek
- Service ENMG et de Pathologies Neuromusculaires, Centre de Référence des Maladies Neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils de Lyon, Bron 69500, France
| | - Tanguy Fenouil
- Service D'anathomopathogie, Centre de Biologie et Pathologie Est (CBPE), Hospices Civils de Lyon, Bron 69500, France
| | - Joaquim Bas
- Service de Neurologie, Centre Hospitalier de Valence, Valence 26000, France
| | - Rita Menassa
- INMG - Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon 69008, France; Service de Biochimie et Biologie Moléculaire, Centre de Biologie et Pathologie Est (CBPE), Hospices Civils de Lyon, Bron 69500, France
| | - Laurence Michel-Calemard
- INMG - Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon 69008, France; Service de Biochimie et Biologie Moléculaire, Centre de Biologie et Pathologie Est (CBPE), Hospices Civils de Lyon, Bron 69500, France
| | - Nathalie Streichenberger
- INMG - Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon 69008, France; Service D'anathomopathogie, Centre de Biologie et Pathologie Est (CBPE), Hospices Civils de Lyon, Bron 69500, France
| | | | - Francoise Bouhour
- Service ENMG et de Pathologies Neuromusculaires, Centre de Référence des Maladies Neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils de Lyon, Bron 69500, France; INMG - Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Teresinha Evangelista
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, APHP, 47-83 bd de l'Hôpital, Paris 75013, France; Unité de Morphologie Neuromusculaire, Institut de Myologie and Functional Unit of Neuromuscular Pathology, Neuropathology Department, Pitié-Salpêtrière Hospital, Sorbonne Université, APHP, Paris, France
| | - Corinne Métay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Antoine Pegat
- Service ENMG et de Pathologies Neuromusculaires, Centre de Référence des Maladies Neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils de Lyon, Bron 69500, France; INMG - Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Tanya Stojkovic
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, APHP, 47-83 bd de l'Hôpital, Paris 75013, France
| | - Gorka Fernández-Eulate
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, APHP, 47-83 bd de l'Hôpital, Paris 75013, France.
| |
Collapse
|
3
|
Gao Y, Peng L, Zhao C. MYH7 in cardiomyopathy and skeletal muscle myopathy. Mol Cell Biochem 2024; 479:393-417. [PMID: 37079208 DOI: 10.1007/s11010-023-04735-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lu Peng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Chompoopong P, Oskarsson B, Madigan NN, Mirman I, Martinez-Thompson JM, Liewluck T, Milone M. Multisystem proteinopathies (MSPs) and MSP-like disorders: Clinical-pathological-molecular spectrum. Ann Clin Transl Neurol 2023; 10:632-643. [PMID: 36861178 PMCID: PMC10109322 DOI: 10.1002/acn3.51751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES Mutations in VCP, HNRNPA2B1, HNRNPA1, and SQSTM1, encoding RNA-binding proteins or proteins in quality-control pathways, cause multisystem proteinopathies (MSP). They share pathological findings of protein aggregation and clinical combinations of inclusion body myopathy (IBM), neurodegeneration [motor neuron disorder (MND)/frontotemporal dementia (FTD)], and Paget disease of bone (PDB). Subsequently, additional genes were linked to similar but not full clinical-pathological spectrum (MSP-like disorders). We aimed to define the phenotypic-genotypic spectrum of MSP and MSP-like disorders at our institution, including long-term follow-up features. METHODS We searched the Mayo Clinic database (January 2010-June 2022) to identify patients with mutations in MSP and MSP-like disorders causative genes. Medical records were reviewed. RESULTS Thirty-one individuals (27 families) had pathogenic mutations in: VCP (n = 17), SQSTM1 + TIA1 (n = 5), TIA1 (n = 5), MATR3, HNRNPA1, HSPB8, and TFG (n = 1, each). Myopathy occurred in all but 2 VCP-MSP patients with disease onset at age 52 (median). Weakness pattern was limb-girdle in 12/15 VCP-MSP and HSPB8 patient, and distal-predominant in other MSP and MSP-like disorders. Twenty/24 muscle biopsies showed rimmed vacuolar myopathy. MND and FTD occurred in 5 (4 VCP, 1 TFG) and 4 (3 VCP, 1 SQSTM1 + TIA1) patients, respectively. PDB manifested in 4 VCP-MSP. Diastolic dysfunction occurred in 2 VCP-MSP. After 11.5 years (median) from symptom onset, 15 patients ambulated without gait-aids; loss of ambulation (n = 5) and death (n = 3) were recorded only in VCP-MSP. INTERPRETATION VCP-MSP was the most common disorder; rimmed vacuolar myopathy was the most frequent manifestation; distal-predominant weakness occurred frequently in non-VCP-MSP; and cardiac involvement was observed only in VCP-MSP.
Collapse
Affiliation(s)
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Igal Mirman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
5
|
Granger A, Beecher G, Liewluck T, Nicolau S, Flanigan KM, Laughlin RS, Milone M. Inherited myopathy plus: Double-trouble from rare neuromuscular disorders. Neuromuscul Disord 2023; 33:153-160. [PMID: 36628841 DOI: 10.1016/j.nmd.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
A rare disorder in the USA is one that affects <200,000 people, making inherited myopathies rare diseases. Increasing access to genetic testing has been instrumental for the diagnosis of inherited myopathies. Genetic findings, however, require clinical correlation due to variable phenotype, polygenic etiology of certain inherited disorders, and possible co-existing independent neuromuscular disorders. We searched the Mayo Clinic Rochester medical record (2004-2020) to identify adult patients carrying pathogenic variants or likely pathogenic variants in genes causative of myopathies and having a coexisting independent neuromuscular disorder classified as rare at https://rarediseases.info.nih.gov/. One additional patient was identified at Nationwide Children's hospital. Clinical and laboratory findings were reviewed. We identified 14 patients from 13 families fulfilling search criteria. Seven patients had a "double-trouble" inherited myopathy; two had an inherited myopathy with coexistent idiopathic myositis; three had an inherited myopathy with coexisting rare neuromuscular disorder of neurogenic type; a female DMD carrier had co-existing distal spinal muscular atrophy, which was featuring the clinical phenotype; and a patient with a MYH7 pathogenic variant had Sandhoff disease causing motor neuron disease. These cases highlight the relevance of correlating genetic findings, even when diagnostic, with clinical features, to allow precise diagnosis, optimal care, and accurate prognosis.
Collapse
Affiliation(s)
- Andre Granger
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stefan Nicolau
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | |
Collapse
|
6
|
Kirola L, Mukherjee A, Mutsuddi M. Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2022; 59:5673-5694. [PMID: 35768750 DOI: 10.1007/s12035-022-02934-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) primarily affect the motor and frontotemporal areas of the brain, respectively. These disorders share clinical, genetic, and pathological similarities, and approximately 10-15% of ALS-FTD cases are considered to be multisystemic. ALS-FTD overlaps have been linked to families carrying an expansion in the intron of C9orf72 along with inclusions of TDP-43 in the brain. Other overlapping genes (VCP, FUS, SQSTM1, TBK1, CHCHD10) are also involved in similar functions that include RNA processing, autophagy, proteasome response, protein aggregation, and intracellular trafficking. Recent advances in genome sequencing have identified new genes that are involved in these disorders (TBK1, CCNF, GLT8D1, KIF5A, NEK1, C21orf2, TBP, CTSF, MFSD8, DNAJC7). Additional risk factors and modifiers have been also identified in genome-wide association studies and array-based studies. However, the newly identified genes show higher disease frequencies in combination with known genes that are implicated in pathogenesis, thus indicating probable digenetic/polygenic inheritance models, along with epistatic interactions. Studies suggest that these genes play a pleiotropic effect on ALS-FTD and other diseases such as Alzheimer's disease, Ataxia, and Parkinsonism. Besides, there have been numerous improvements in the genotype-phenotype correlations as well as clinical trials on stem cell and gene-based therapies. This review discusses the possible genetic models of ALS and FTD, the latest therapeutics, and signaling pathways involved in ALS-FTD.
Collapse
Affiliation(s)
- Laxmi Kirola
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
7
|
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background. Diagnostics (Basel) 2021; 11:diagnostics11030509. [PMID: 33805659 PMCID: PMC7998502 DOI: 10.3390/diagnostics11030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
Collapse
|
8
|
Du Y, Wang Y, Han X, Feng Z, Ma A. MYH7 Gene-Related Mutation p.V878L Identified in a Chinese Family with Hypertrophic Cardiomyopathy. Int Heart J 2019; 60:1415-1420. [PMID: 31735781 DOI: 10.1536/ihj.19-146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common inherited cardiovascular diseases and possesses a high risk for sudden cardiac death. Although mutations in more than 20 genes have been reported to be associated with HCM thus far, the genetic backgrounds of most HCM patients are not fully understood. We performed a genetic analysis in a Chinese family that presented with HCM using next-generation sequencing (NGS). Clinical data, family histories, and blood samples were collected from the proband and family members. Five patients showed typical clinical symptoms of HCM. One subject was the victim of sudden cardiac death. By NGS, we determined that these subjects with HCM symptoms carried a missense heterozygous genetic mutation c.2632C>A (p.V878L) in the myosin heavy chain 7 (MYH7) gene with an autosomal dominant pattern of inheritance. Individuals without this mutation showed no symptoms or cardiac structural abnormalities related to HCM. Bioinformatics evaluation predicted this mutant as "damaging" and "disease causing". Additionally, sequence alignment showed that this mutant is located in an evolutionarily conserved region of MYH7 in multiple species. Our results describe a potentially pathogenic mutation associated with HCM, which may extend the spectrum of HCM phenotypes related to MYH7 gene mutations.
Collapse
Affiliation(s)
- Yuan Du
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University
| | - Xiu Han
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University
| | - Zhanbin Feng
- Department of Cardiovascular Medicine, Ninth Hospital of Xi'an
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University.,Shaanxi Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education
| |
Collapse
|
9
|
Nicolau S, Liewluck T, Tracy JA, Laughlin RS, Milone M. Congenital myopathies in the adult neuromuscular clinic: Diagnostic challenges and pitfalls. NEUROLOGY-GENETICS 2019; 5:e341. [PMID: 31321302 PMCID: PMC6563518 DOI: 10.1212/nxg.0000000000000341] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023]
Abstract
Objective To investigate the spectrum of undiagnosed congenital myopathies (CMs) in adults presenting to our neuromuscular clinic and to identify the pitfalls responsible for diagnostic delays. Methods We conducted a retrospective review of patients diagnosed with CM in adulthood in our neuromuscular clinic between 2008 and 2018. Patients with an established diagnosis of CM before age 18 years were excluded. Results We identified 26 patients with adult-onset CM and 18 patients with pediatric-onset CM who were only diagnosed in adulthood. Among patients with adult onset, the median age at onset was 47 years, and the causative genes were RYR1 (11 families), MYH7 (3 families) and ACTA1 (2 families), and SELENON, MYH2, DNM2, and CACNA1S (1 family each). Of 33 patients who underwent muscle biopsy, only 18 demonstrated histologic abnormalities characteristic of CM. Before their diagnosis of CM, 23 patients had received other diagnoses, most commonly non-neurologic disorders. The main causes of diagnostic delays were mildness of the symptoms delaying neurologic evaluation and attribution of the symptoms to coexisting comorbidities, particularly among pediatric-onset patients. Conclusions CMs in adulthood represent a diagnostic challenge, as they may lack the clinical and myopathologic features classically associated with CM. Our findings underscore the need for a revision of the terminology and current classification of these disorders.
Collapse
|
10
|
Milone M, Liewluck T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2018; 59:283-294. [PMID: 30171629 DOI: 10.1002/mus.26332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
Distal myopathies are a group of rare muscle diseases characterized by distal weakness at onset. Although acquired myopathies can occasionally present with distal weakness, the majority of distal myopathies have a genetic etiology. Their age of onset varies from early-childhood to late-adulthood while the predominant muscle weakness can affect calf, ankle dorsiflexor, or distal upper limb muscles. A spectrum of muscle pathological changes, varying from nonspecific myopathic changes to rimmed vacuoles to myofibrillar pathology to nuclei centralization, have been noted. Likewise, the underlying molecular defect is heterogeneous. In addition, there is emerging evidence that distal myopathies can result from defective proteins encoded by genes causative of neurogenic disorders, be manifestation of multisystem proteinopathies or the result of the altered interplay between different genes. In this review, we provide an overview on the clinical, electrophysiological, pathological, and molecular aspects of distal myopathies, focusing on the most recent developments in the field. Muscle Nerve 59:283-294, 2019.
Collapse
Affiliation(s)
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Nguyen HP, Van Broeckhoven C, van der Zee J. ALS Genes in the Genomic Era and their Implications for FTD. Trends Genet 2018; 34:404-423. [PMID: 29605155 DOI: 10.1016/j.tig.2018.03.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease, characterized genetically by a disproportionately large contribution of rare genetic variation. Driven by advances in massive parallel sequencing and applied on large patient-control cohorts, systematic identification of these rare variants that make up the genetic architecture of ALS became feasible. In this review paper, we present a comprehensive overview of recently proposed ALS genes that were identified based on rare genetic variants (TBK1, CHCHD10, TUBA4A, CCNF, MATR3, NEK1, C21orf2, ANXA11, TIA1) and their potential relevance to frontotemporal dementia genetic etiology. As more causal and risk genes are identified, it has become apparent that affected individuals can carry multiple disease-associated variants. In light of this observation, we discuss the oligogenic architecture of ALS. To end, we highlight emerging key molecular processes and opportunities for therapy.
Collapse
Affiliation(s)
- Hung Phuoc Nguyen
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Niu Z, Pontifex CS, Berini S, Hamilton LE, Naddaf E, Wieben E, Aleff RA, Martens K, Gruber A, Engel AG, Pfeffer G, Milone M. Myopathy With SQSTM1 and TIA1 Variants: Clinical and Pathological Features. Front Neurol 2018; 9:147. [PMID: 29599744 PMCID: PMC5868303 DOI: 10.3389/fneur.2018.00147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
Objective The aim of this study is to identify the molecular defect of three unrelated individuals with late-onset predominant distal myopathy; to describe the spectrum of phenotype resulting from the contributing role of two variants in genes located on two different chromosomes; and to highlight the underappreciated complex forms of genetic myopathies. Patients and methods Clinical and laboratory data of three unrelated probands with predominantly distal weakness manifesting in the sixth-seventh decade of life, and available affected and unaffected family members were reviewed. Next-generation sequencing panel, whole exome sequencing, and targeted analyses of family members were performed to elucidate the genetic etiology of the myopathy. Results Genetic analyses detected two contributing variants located on different chromosomes in three unrelated probands: a heterozygous pathogenic mutation in SQSTM1 (c.1175C>T, p.Pro392Leu) and a heterozygous variant in TIA1 (c.1070A>G, p.Asn357Ser). The affected fraternal twin of one proband also carries both variants, while the unaffected family members harbor one or none. Two unrelated probands (family 1, II.3, and family 3, II.1) have a distal myopathy with rimmed vacuoles that manifested with index extensor weakness; the other proband (family 2, I.1) has myofibrillar myopathy manifesting with hypercapnic respiratory insufficiency and distal weakness. Conclusion The findings indicate that all the affected individuals have a myopathy associated with both variants in SQSTM1 and TIA1, respectively, suggesting that the two variants determine the phenotype and likely functionally interact. We speculate that the TIA1 variant is a modifier of the SQSTM1 mutation. We identify the combination of SQSTM1 and TIA1 variants as a novel genetic defect associated with myofibrillar myopathy and suggest to consider sequencing both genes in the molecular investigation of myopathy with rimmed vacuoles and myofibrillar myopathy although additional studies are needed to investigate the digenic nature of the disease.
Collapse
Affiliation(s)
- Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Carly Sabine Pontifex
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah Berini
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Leslie E Hamilton
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Eric Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ross A Aleff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kristina Martens
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | - Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Gerald Pfeffer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
13
|
Yuan Z, Jiao B, Hou L, Xiao T, Liu X, Wang J, Xu J, Zhou L, Yan X, Tang B, Shen L. Mutation analysis of the TIA1 gene in Chinese patients with amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Aging 2017; 64:160.e9-160.e12. [PMID: 29370934 DOI: 10.1016/j.neurobiolaging.2017.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. Frontotemporal dementia (FTD) is a group of dementia syndromes characterized by the progressive deterioration of behaviors, executive dysfunction, and verbal impairment. Increasing evidence indicates that these 2 diseases share a common genetic etiology and pathophysiological mechanism. Recently, rare mutations in the low-complexity domain of the RNA-binding protein T-cell-restricted intracellular antigen-1 (TIA1) gene were identified in Caucasian ALS and ALS-FTD patients. However, no comprehensive mutation analysis of the TIA1 gene has been performed in Chinese patients with ALS and FTD. In this study, we screened the low-complexity domain of TIA1 in a cohort of 241 ALS and 51 FTD patients in mainland China. As a result, 2 novel missense mutations (p.P352L and p.I300T) were identified in 2 sporadic patients with ALS, while no mutation was found in FTD cases. To the best of our knowledge, this report presented the first mutation analysis of the TIA1 gene in patients with ALS and FTD in Chinese population. Our findings broaden the known mutational spectrum in patients with ALS and further confirm TIA1 as a novel causative gene of ALS.
Collapse
Affiliation(s)
- Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lihua Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jun Xu
- Department of Neurology, Brain Center, Neurological Institute, Northern Jiangsu Province Hospital, Yangzhou, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China; Collaborative Innovation Center for Brain Science, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
| |
Collapse
|
14
|
Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, Annu K, Baker M, Perkerson RB, Kurti A, Matchett BJ, Mittag T, Temirov J, Hsiung GYR, Krieger C, Murray ME, Kato M, Fryer JD, Petrucelli L, Zinman L, Weintraub S, Mesulam M, Keith J, Zivkovic SA, Hirsch-Reinshagen V, Roos RP, Züchner S, Graff-Radford NR, Petersen RC, Caselli RJ, Wszolek ZK, Finger E, Lippa C, Lacomis D, Stewart H, Dickson DW, Kim HJ, Rogaeva E, Bigio E, Boylan KB, Taylor JP, Rademakers R. TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 2017; 95:808-816.e9. [PMID: 28817800 DOI: 10.1016/j.neuron.2017.07.025] [Citation(s) in RCA: 467] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health and the University of British Colombia, Vancouver, BC V6T 2B5, Canada
| | | | - Mohona Sarkar
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Maria D Purice
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Cyril Pottier
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Kavya Annu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Ralph B Perkerson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Billie J Matchett
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ging-Yuek R Hsiung
- Division of Neurology, Vancouver Coastal Health and the University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Charles Krieger
- Division of Neurology, Vancouver Coastal Health and the University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Sandra Weintraub
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsel Mesulam
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Julia Keith
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sasha A Zivkovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Veronica Hirsch-Reinshagen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health and the University of British Colombia, Vancouver, BC V6T 2B5, Canada
| | - Raymond P Roos
- Department of Neurology, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Ronald C Petersen
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Richard J Caselli
- Department of Neurology, Mayo Clinic Scottsdale, Phoenix, AZ 85054, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Carol Lippa
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA 19107, USA; Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Lacomis
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Heather Stewart
- Division of Neurology, Vancouver Coastal Health and the University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Eileen Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA.
| |
Collapse
|