1
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
2
|
Jo S, Lee SH, Jeon C, Jo HR, You YJ, Lee JK, Sung IH, Kim TH, Lee CH. Myosin heavy chain 2 (MYH2) expression in hypertrophic chondrocytes of soft callus provokes endochondral bone formation in fracture. Life Sci 2023; 334:122204. [PMID: 37871676 DOI: 10.1016/j.lfs.2023.122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
AIMS Muscle-bone interactions during fracture healing are rarely known. Here we investigated the presence and significance of myosin heavy chain 2 (MYH2), a component of myosin derived from muscles, in fracture healing. MAIN METHODS We collected five hematoma and seven soft callus tissues from patients with distal radius fractures patients, randomly selected three of them, and performed a liquid chromatography-mass spectrometry (LC-MS) proteomics analysis. Proteomic results were validated by histological observation, immunohistochemistry, and immunofluorescence for MYH2 expression. These findings were further confirmed in a murine femoral fracture model in vivo and investigated using various methods in vitro. KEY FINDINGS The LC-MS proteomics analysis showed that MYH proteins were enriched in human soft calluses compared to hematoma. Notably, MYH2 protein is upregulated as high rank in each soft callus. The histological examination showed that MYH2 expression was elevated in hypertrophic chondrocytes within the human soft callus. Consistent with human data, Myh2 were significantly co-localized with Sox9 in hypertrophic chondrocytes of murine femoral fracture, in comparison to pre-hypertrophic and proliferating chondrocytes. Soluble MYH2 protein treatment increased MMP13 and RUNX2 expression in chondrocytes. In soluble MYH2 treatment, proliferation of chondrocytes was not altered, but the osteogenic and chondrogenic features of chondrocytes increased and decreased during differentiation, respectively. SIGNIFICANCE These findings indicate the potential of soluble MYH2 protein as a promising therapeutic strategy for promoting endochondral bone formation in chondrocytes following fracture.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hye-Ryeong Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Yong Jin You
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jin Kyu Lee
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Il-Hoon Sung
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| | - Chang-Hun Lee
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Maniyar AMH, Singh RK, Ojha PT, Chaudhary GS, Mahto AP, Shah AG. Myosin Myopathy Presenting as Chronic Progressive External Ophthalmoplegia. Ann Indian Acad Neurol 2023; 26:1024-1025. [PMID: 38229656 PMCID: PMC10789400 DOI: 10.4103/aian.aian_552_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Aamna M. H. Maniyar
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Rakesh K. Singh
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Pawan T. Ojha
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Gaurav S. Chaudhary
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Anuradha P. Mahto
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Arjun G. Shah
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Sato K, Miyauchi Y, Xu X, Kon R, Ikarashi N, Chiba Y, Hosoe T, Sakai H. Platinum-based anticancer drugs-induced downregulation of myosin heavy chain isoforms in skeletal muscle of mouse. J Pharmacol Sci 2023; 152:167-177. [PMID: 37257944 DOI: 10.1016/j.jphs.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Cisplatin, a platinum-based anticancer drug used frequently in cancer treatment, causes skeletal muscle atrophy. It was predicted that the proteolytic pathway is enhanced as the mechanism of this atrophy. Therefore, we investigated whether a platinum-based anticancer drug affects the expression of the major proteins of skeletal muscle, myosin heavy chain (MyHC). Mice were injected with cisplatin or oxaliplatin for four consecutive days. C2C12 myotubes were treated using cisplatin and oxaliplatin. Administration of platinum-based anticancer drug reduced quadriceps mass and muscle strength compared to the control group. Protein levels of all MyHC isoforms were reduced in the platinum-based anticancer drug groups. However, only Myh2 (MyHC-IIa) gene expression in skeletal muscle of mice treated with platinum-based anticancer drugs was found to be reduced. Treatment of C2C12 myotubes with platinum-based anticancer drugs reduced the protein levels of all MyHCs, and treatment with the proteasome inhibitor MG-132 restored this reduction. The expression of Mef2c, which was predicted to act upstream of Myh2, was reduced in the skeletal muscle of mice treated systemically with platinum-based anticancer drug. Degradation of skeletal muscle MyHCs by proteasomes may be a factor that plays an important role in muscle mass loss in platinum-based anticancer drug-induced muscle atrophy.
Collapse
Affiliation(s)
- Ken Sato
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Xinran Xu
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan; Department of Bioregulatory Science, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan.
| |
Collapse
|
5
|
Cassini TA, Malicdan MCV, Macnamara EF, Lehky T, Horkayne-Szakaly I, Huang Y, Jones R, Godfrey R, Wolfe L, Gahl WA, Toro C. MYH2-associated myopathy caused by a novel splice-site variant. Neuromuscul Disord 2023; 33:257-262. [PMID: 36774715 PMCID: PMC10023425 DOI: 10.1016/j.nmd.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
MYH2 encodes MyHCIIa, a myosin heavy chain found in fast type 2A fibers. Pathogenic variants in this gene have previously been implicated in dominant and recessive forms of myopathy. Three individuals reported here are part of a family in which four generations of individuals are affected by a slowly progressive, predominantly proximal myopathy in an autosomal dominant inheritance pattern. Affected individuals in this family lacked classic features of an MYH2-associated myopathy such as congenital contractures and ophthalmoplegia. A novel variant, MYH2 c.5673+1G>C, was detected in the proband and subsequently found to segregate with disease in five additional family members. Further studies demonstrated that this variant affects splicing, resulting in novel transcripts. These data and muscle biopsy findings in the proband, indicate that this family's MYH2 variant is causative of their myopathy, adding to our understanding of the clinical and molecular characteristics of the disease.
Collapse
Affiliation(s)
- Thomas A Cassini
- Medical Genetics and Genomic Medicine Training Program, NIH, National Human Genome Research Institute (NHGRI), 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | - Ellen F Macnamara
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - Tanya Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Yan Huang
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - Robert Jones
- The Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, USA
| | - Rena Godfrey
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - Lynne Wolfe
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - William A Gahl
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA
| | - Camilo Toro
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| |
Collapse
|
6
|
Hedberg-Oldfors C, Elíasdóttir Ó, Geijer M, Lindberg C, Oldfors A. Dominantly inherited myosin IIa myopathy caused by aberrant splicing of MYH2. BMC Neurol 2022; 22:428. [PMCID: PMC9664609 DOI: 10.1186/s12883-022-02935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Myosin heavy chain (MyHC) isoforms define the three major muscle fiber types in human extremity muscles. Slow beta/cardiac MyHC (MYH7) is expressed in type 1 muscle fibers. MyHC IIa (MYH2) and MyHC IIx (MYH1) are expressed in type 2A and 2B fibers, respectively. Whereas recessive MyHC IIa myopathy has been described in many cases, myopathy caused by dominant MYH2 variants is rare and has been described with clinical manifestations and muscle pathology in only one family and two sporadic cases.
Methods
We investigated three patients from one family with a dominantly inherited myopathy by clinical investigation, whole-genome sequencing, muscle biopsy, and magnetic resonance imaging (MRI).
Results
Three siblings, one woman and two men now 54, 56 and 66 years old, had experienced muscle weakness initially affecting the lower limbs from young adulthood. They have now generalized proximal muscle weakness affecting ambulation, but no ophthalmoplegia. Whole-genome sequencing identified a heterozygous MYH2 variant, segregating with the disease in the three affected individuals: c.5673 + 1G > C. Analysis of cDNA confirmed the predicted splicing defect with skipping of exon 39 and loss of residues 1860–1891 in the distal tail of the MyHC IIa, largely overlapping with the filament assembly region (aa1877–1905). Muscle biopsy in two of the affected individuals showed prominent type 1 muscle fiber predominance with only a few very small, scattered type 2A fibers and no type 2B fibers. The small type 2A fibers were frequently hybrid fibers with either slow MyHC or embryonic MyHC expression. The type 1 fibers showed variation in fiber size, internal nuclei and some structural alterations. There was fatty infiltration, which was also demonstrated by MRI.
Conclusion
Dominantly inherited MyHC IIa myopathy due to a splice defect causing loss of amino acids 1860–1891 in the distal tail of the MyHC IIa protein including part of the assembly competence domain. The myopathy is manifesting with slowly progressive muscle weakness without overt ophthalmoplegia and markedly reduced number and size of type 2 fibers.
Collapse
|
7
|
Oatmen K, Camelo-Piragua S, Zaghloul N. Novel mutation in the MYH2 gene in a symptomatic neonate with a hereditary myosin myopathy. J Neonatal Perinatal Med 2021; 15:63-68. [PMID: 34459418 DOI: 10.3233/npm-210780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Hereditary myosin myopathies are muscle disorders caused by mutations in myosin heavy chain genes. The MYH2 gene encodes the fast 2A skeletal muscle isoform, and mutations manifest as joint contractures, muscle weakness, and external ophthalmoplegia. Muscle biopsy shows decreased type 2A fibers, and vacuoles are sometimes present in adults with progressive disease. PRESENTATION OF CASE This case describes a full term baby boy with hypotonia, dysmorphic features, dysphagia, and aspiration. Whole genome sequencing detected a novel heterozygous variant in the MYH2 gene. Muscle biopsy showed decreased type 2A fibers and vacuoles in myofibers. DISCUSSION Hypotonia and dysphagia are common in infants with a MYH2 myopathy. However, dysmorphic features and vacuoles on biopsy have not previous been described in infants with MYH2 myopathies. CONCLUSION This case reports an unusual phenotype of a rare neonatal-onset congenital myopathy associated with a novel heterozygous variant in MYH2.
Collapse
Affiliation(s)
- K Oatmen
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - S Camelo-Piragua
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - N Zaghloul
- Department of Pediatrics, Division of Neonatology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Madigan NN, Polzin MJ, Cui G, Liewluck T, Alsharabati MH, Klein CJ, Windebank AJ, Mer G, Milone M. Filamentous tangles with nemaline rods in MYH2 myopathy: a novel phenotype. Acta Neuropathol Commun 2021; 9:79. [PMID: 33926564 PMCID: PMC8082902 DOI: 10.1186/s40478-021-01168-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022] Open
Abstract
The MYH2 gene encodes the skeletal muscle myosin heavy chain IIA (MyHC-IIA) isoform, which is expressed in the fast twitch type 2A fibers. Autosomal dominant or recessive pathogenic variants in MYH2 lead to congenital myopathy clinically featured by ophthalmoparesis and predominantly proximal weakness. MYH2-myopathy is pathologically characterized by loss and atrophy of type 2A fibers. Additional myopathological abnormalities have included rimmed vacuoles containing small p62 positive inclusions, 15–20 nm tubulofilaments, minicores and dystrophic changes. We report an adult patient with late-pediatric onset MYH2-myopathy caused by two heterozygous pathogenic variants: c.3331C>T, p.Gln1111* predicted to result in truncation of the proximal tail region of MyHC-IIA, and c.1546T>G, p.Phe516Val, affecting a highly conserved amino acid within the highly conserved catalytic motor head relay loop. This missense variant is predicted to result in a less compact loop domain and in turn could affect the protein affinity state. The patient’s genotype is accompanied by a novel myopathological phenotype characterized by centralized large myofilamentous tangles associated with clusters of nemaline rods, and ring fibers, in addition to the previously reported rimmed vacuoles, paucity and atrophy of type 2A fibers. Electron microscopy demonstrated wide areas of disorganized myofibrils which were oriented in various planes of direction and entrapped multiple nemaline rods, as corresponding to the large tangles with rods seen on light microscopy. Nemaline rods were rarely observed also in nuclei. We speculate that the mutated MyHC-IIA may influence myofibril disorganization. While nemaline rods have been described in myopathies caused by pathogenic variants in genes encoding several sarcomeric proteins, to our knowledge, nemaline rods have not been previously described in MYH2-myopathy.
Collapse
|
9
|
Schon KR, Ratnaike T, van den Ameele J, Horvath R, Chinnery PF. Mitochondrial Diseases: A Diagnostic Revolution. Trends Genet 2020; 36:702-717. [PMID: 32674947 DOI: 10.1016/j.tig.2020.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
Mitochondrial disorders have emerged as a common cause of inherited disease, but are traditionally viewed as being difficult to diagnose clinically, and even more difficult to comprehensively characterize at the molecular level. However, new sequencing approaches, particularly whole-genome sequencing (WGS), have dramatically changed the landscape. The combined analysis of nuclear and mitochondrial DNA (mtDNA) allows rapid diagnosis for the vast majority of patients, but new challenges have emerged. We review recent discoveries that will benefit patients and families, and highlight emerging questions that remain to be resolved.
Collapse
Affiliation(s)
- Katherine R Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Thiloka Ratnaike
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Paediatrics, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
10
|
Telese R, Pagliarani S, Lerario A, Ciscato P, Fagiolari G, Cassandrini D, Grimoldi N, Conte G, Cinnante C, Santorelli FM, Comi GP, Sciacco M, Peverelli L. MYH2 myopathy, a new case expands the clinical and pathological spectrum of the recessive form. Mol Genet Genomic Med 2020; 8:e1320. [PMID: 32578970 PMCID: PMC7507101 DOI: 10.1002/mgg3.1320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background Hereditary myosin myopathies are a group of rare muscle disorders, caused by mutations in genes encoding for skeletal myosin heavy chains (MyHCs). MyHCIIa is encoded by MYH2 and is expressed in fast type 2A and 2B muscle fibers. MYH2 mutations are responsible for an autosomal dominant (AD) progressive myopathy, characterized by the presence of rimmed vacuoles and by a reduction in the number and size of type 2A fibers, and a recessive early onset myopathy characterized by complete loss of type 2A fibers. Recently, a patient with a homozygous mutation but presenting a dominant phenotype has been reported. Methods The patient was examined thoroughly and two muscle biopsies were performed through the years. NGS followed by confirmation in Sanger sequencing was used to identify the genetic cause. Results We describe the second case presenting with late‐onset ophthalmoparesis, ptosis, diffuse muscle weakness, and histopathological features typical for AD forms but with a recessive MYH2 genotype. Conclusion This report contributes to expand the clinical and genetic spectrum of MYH2 myopathies and to increase the awareness of these very rare diseases.
Collapse
Affiliation(s)
- Roberta Telese
- Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Serena Pagliarani
- Dino Ferrari Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alberto Lerario
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gigliola Fagiolari
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Nadia Grimoldi
- University of Milan, Neurosurgey Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Giacomo P Comi
- Dino Ferrari Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Peverelli
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|