1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Korpela H, Järveläinen N, Siimes S, Lampela J, Airaksinen J, Valli K, Turunen M, Pajula J, Nurro J, Ylä-Herttuala S. Gene therapy for ischaemic heart disease and heart failure. J Intern Med 2021; 290:567-582. [PMID: 34033164 DOI: 10.1111/joim.13308] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
Gene therapy has been expected to become a novel treatment method since the structure of DNA was discovered in 1953. The morbidity from cardiovascular diseases remains remarkable despite the improvement of percutaneous interventions and pharmacological treatment, underlining the need for novel therapeutics. Gene therapy-mediated therapeutic angiogenesis could help those who have not gained sufficient symptom relief with traditional treatment methods. Especially patients with severe coronary artery disease and heart failure could benefit from gene therapy. Some clinical trials have reported improved myocardial perfusion and symptom relief in CAD patients, but few trials have come up with disappointing negative results. Translating preclinical success into clinical applications has encountered difficulties in successful transduction, study design, endpoint selection, and patient selection and recruitment. However, promising new methods for transducing the cells, such as retrograde delivery and cardiac-specific AAV vectors, hold great promise for myocardial gene therapy. This review introduces gene therapy for ischaemic heart disease and heart failure and discusses the current status and future developments in this field.
Collapse
Affiliation(s)
- H Korpela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N Järveläinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Siimes
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Lampela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Airaksinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - K Valli
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Turunen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Pajula
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Nurro
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Day JW, Mendell JR, Mercuri E, Finkel RS, Strauss KA, Kleyn A, Tauscher-Wisniewski S, Tukov FF, Reyna SP, Chand DH. Clinical Trial and Postmarketing Safety of Onasemnogene Abeparvovec Therapy. Drug Saf 2021; 44:1109-1119. [PMID: 34383289 PMCID: PMC8473343 DOI: 10.1007/s40264-021-01107-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Introduction This is the first description of safety data for intravenous onasemnogene abeparvovec, the only approved systemically administered gene-replacement therapy for spinal muscular atrophy. Objective We comprehensively assessed the safety of intravenous onasemnogene abeparvovec from preclinical studies, clinical studies, and postmarketing data. Methods Single-dose toxicity studies were performed in neonatal mice and juvenile or neonatal cynomolgus nonhuman primates (NHPs). Data presented are from a composite of preclinical studies, seven clinical trials, and postmarketing sources (clinical trials, n = 102 patients; postmarketing surveillance, n = 665 reported adverse event [AE] cases). In clinical trials, safety was assessed through AE monitoring, vital-sign and cardiac assessments, laboratory evaluations, physical examinations, and concomitant medication use. AE reporting and available objective clinical data from postmarketing programs were evaluated. Results The main target organs of toxicity in mice were the heart and liver. Dorsal root ganglia (DRG) inflammation was observed in NHPs. Patients exhibited no evidence of sensory neuropathy upon clinical examination. In clinical trials, 101/102 patients experienced at least one treatment-emergent AE. In total, 50 patients experienced serious AEs, including 11 considered treatment related. AEs consistent with hepatotoxicity resolved with prednisolone in clinical trials. Transient decreases in mean platelet count were detected but were without bleeding complications. Thrombotic microangiopathy (TMA) was observed in the postmarketing setting. No evidence of intracardiac thrombi was observed for NHPs or patients. Conclusions Risks associated with onasemnogene abeparvovec can be anticipated, monitored, and managed. Hepatotoxicity events resolved with prednisolone. Thrombocytopenia was transient. TMA may require medical intervention. Important potential risks include cardiac AEs and DRG toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s40264-021-01107-6.
Collapse
Affiliation(s)
- John W Day
- Department of Neurology, Stanford University Medical Center, MC 5979, 213 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Ohio State University, Columbus, OH, USA
- Department of Neurology, Ohio State University, Columbus, OH, USA
| | - Eugenio Mercuri
- Department of Paediatric Neurology and Nemo Clinical Centre, Catholic University, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Richard S Finkel
- Department of Pediatrics, Nemours Children's Hospital, Orlando, FL, USA
- Center for Experimental Neurotherapeutics, St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA
- Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
- Department of Pediatrics, University of Massachusetts School of Medicine, Worcester, MA, USA
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Aaron Kleyn
- Novartis Gene Therapies, Inc., Bannockburn, IL, USA
| | | | | | | | - Deepa H Chand
- Novartis Gene Therapies, Inc., Bannockburn, IL, USA
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| |
Collapse
|
4
|
Landmesser U, Poller W, Tsimikas S, Most P, Paneni F, Lüscher TF. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J 2021; 41:3884-3899. [PMID: 32350510 DOI: 10.1093/eurheartj/ehaa229] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are currently developed at large scale for prevention and management of cardiovascular diseases (CVDs), since: (i) genetic studies have highlighted novel therapeutic targets suggested to be causal for CVD; (ii) there is a substantial recent progress in delivery, efficacy, and safety of nucleic acid-based therapies; (iii) they enable effective modulation of therapeutic targets that cannot be sufficiently or optimally addressed using traditional small molecule drugs or antibodies. Nucleic acid-based therapeutics include (i) RNA-targeted therapeutics for gene silencing; (ii) microRNA-modulating and epigenetic therapies; (iii) gene therapies; and (iv) genome-editing approaches (e.g. CRISPR-Cas-based): (i) RNA-targeted therapeutics: several large-scale clinical development programmes, using antisense oligonucleotides (ASO) or short interfering RNA (siRNA) therapeutics for prevention and management of CVD have been initiated. These include ASO and/or siRNA molecules to lower apolipoprotein (a) [apo(a)], proprotein convertase subtilisin/kexin type 9 (PCSK9), apoCIII, ANGPTL3, or transthyretin (TTR) for prevention and treatment of patients with atherosclerotic CVD or TTR amyloidosis. (ii) MicroRNA-modulating and epigenetic therapies: novel potential therapeutic targets are continually arising from human non-coding genome and epigenetic research. First microRNA-based therapeutics or therapies targeting epigenetic regulatory pathways are in clinical studies. (iii) Gene therapies: EMA/FDA have approved gene therapies for non-cardiac monogenic diseases and LDL receptor gene therapy is currently being examined in patients with homozygous hypercholesterolaemia. In experimental studies, gene therapy has significantly improved cardiac function in heart failure animal models. (iv) Genome editing approaches: these technologies, such as using CRISPR-Cas, have proven powerful in stem cells, however, important challenges are remaining, e.g. low rates of homology-directed repair in somatic cells such as cardiomyocytes. In summary, RNA-targeted therapies (e.g. apo(a)-ASO and PCSK9-siRNA) are now in large-scale clinical outcome trials and will most likely become a novel effective and safe therapeutic option for CVD in the near future. MicroRNA-modulating, epigenetic, and gene therapies are tested in early clinical studies for CVD. CRISPR-Cas-mediated genome editing is highly effective in stem cells, but major challenges are remaining in somatic cells, however, this field is rapidly advancing.
Collapse
Affiliation(s)
- Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA 92093-0682, USA
| | - Patrick Most
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Center for Translational Medicine, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA.,Molecular and Translational Cardiology, Department of Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, MOU2, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Research, Education and Development, Royal Brompton and Harefield Hospital Trust and Imperial College London, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
5
|
Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids 2020; 52:863-870. [PMID: 32577910 DOI: 10.1007/s00726-020-02864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family consists of seven cytosolic serine/threonine (Ser/Thr) protein kinases, and among them, GRK2 is involved in the regulation of an enormous range of both G protein-coupled receptors (GPCRs) and non-GPCR substrates that participate in or regulate many critical cellular processes. GRK2 dysfunction is associated with multiple diseases, including cancers, brain diseases, cardiovascular and metabolic diseases, and therefore GRK2-specific substrates/inhibitors are needed not only for studies of GRK2-mediated cellular functions but also for GRK2-targeted drug development. Here, we first review the structure, regulation and functions of GRK2, and its synthetic substrates and inhibitors. We then highlight recent work on synthetic peptide substrates/inhibitors as promising tools for fundamental studies of the physiological functions of GRK2, and as candidates for applications in clinical diagnostics.
Collapse
|
6
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
7
|
van Putten M, Lloyd EM, de Greef JC, Raz V, Willmann R, Grounds MD. Mouse models for muscular dystrophies: an overview. Dis Model Mech 2020; 13:dmm043562. [PMID: 32224495 PMCID: PMC7044454 DOI: 10.1242/dmm.043562] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscular dystrophies (MDs) encompass a wide variety of inherited disorders that are characterized by loss of muscle tissue associated with a progressive reduction in muscle function. With a cure lacking for MDs, preclinical developments of therapeutic approaches depend on well-characterized animal models that recapitulate the specific pathology in patients. The mouse is the most widely and extensively used model for MDs, and it has played a key role in our understanding of the molecular mechanisms underlying MD pathogenesis. This has enabled the development of therapeutic strategies. Owing to advancements in genetic engineering, a wide variety of mouse models are available for the majority of MDs. Here, we summarize the characteristics of the most commonly used mouse models for a subset of highly studied MDs, collated into a table. Together with references to key publications describing these models, this brief but detailed overview would be useful for those interested in, or working with, mouse models of MD.
Collapse
Affiliation(s)
- Maaike van Putten
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Erin M Lloyd
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| | - Jessica C de Greef
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Vered Raz
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | | | - Miranda D Grounds
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| |
Collapse
|
8
|
Adenoviral.βARKct Cardiac Gene Therapy Ameliorates Cardiac Function Following Cardiopulmonary Bypass in A Swine Model. Shock 2019; 54:563-573. [PMID: 31895875 DOI: 10.1097/shk.0000000000001499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Abstract
G protein-coupled receptors (GPCRs) are critical cellular sensors that mediate numerous physiological processes. In the heart, multiple GPCRs are expressed on various cell types, where they coordinate to regulate cardiac function by modulating critical processes such as contractility and blood flow. Under pathological settings, these receptors undergo aberrant changes in expression levels, localization and capacity to couple to downstream signalling pathways. Conventional therapies for heart failure work by targeting GPCRs, such as β-adrenergic receptor and angiotensin II receptor antagonists. Although these treatments have improved patient survival, heart failure remains one of the leading causes of mortality worldwide. GPCR kinases (GRKs) are responsible for GPCR phosphorylation and, therefore, desensitization and downregulation of GPCRs. In this Review, we discuss the GPCR signalling pathways and the GRKs involved in the pathophysiology of heart disease. Given that increased expression and activity of GRK2 and GRK5 contribute to the loss of contractile reserve in the stressed and failing heart, inhibition of overactive GRKs has been proposed as a novel therapeutic approach to treat heart failure.
Collapse
|