1
|
Nghiem PP, Rutledge AM, Tehas K, Kaderli C, Poling M, Arnim S, Dernov V, van Sas C, Mackey ML, Have GAMT, Engelen MPKJ, Deutz NEP. Beta-hydroxy-beta-methylbutyrate (HMB) improves daily activity and whole-body protein metabolism in Duchenne muscular dystrophy dogs: a pilot study. Sci Rep 2025; 15:4026. [PMID: 39894866 PMCID: PMC11788438 DOI: 10.1038/s41598-025-88651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease due to loss of dystrophin, leading to progressive muscle wasting and physical inactivity. In this pilot study, we studied the effect of daily supplementation of the anabolic substrate beta-hydroxy-beta-methylbutyrate (HMB) on whole body protein and amino acid kinetics using novel isotope methods and daily activity in a canine model of DMD. Six DMD dogs were administered 3 g daily of HMB or placebo for 28 days according to a randomized, placebo-controlled, double-blinded crossover design. We measured pre- and post-intervention daily activity, biochemistry markers, and whole-body amino acid kinetics. We tracked daily activity with an activity monitoring device and measured plasma creatine kinase and standard clinical biochemistry panels to monitor muscle and organ function. To calculate whole body and intracellular amino acid production, we administered in the postabsorptive state an IV stable isotope solution containing 20 amino acid tracers. We collected blood before and six times after until two hours post tracer pulse administration and measured amino acid enrichments and concentrations by LC-MS/MS, subsequently followed by (non) compartmental modeling of the decay enrichment curves. Results were expressed as mean with 95% CI. Whole body production, plasma concentrations, and intra-/extracellular compartmental analyses of various amino acids were attenuated in HMB-dosed DMD dogs. Specifically, the plasma concentration of hydroxyproline (marker of collagen breakdown) was significantly higher in the placebo group compared to the HMB group. The intra- and extracellular pool sizes and flux between the two compartments of hydroxyproline was reduced in HMB treated dogs. DMD dogs treated with HMB as compared to placebo had a respective 40% increase in exertional (play) (951 [827, 1075] versus 569 [491, 647]; p < 0.0001) and 10.5% increase in non-exertional (active) activity (15,366 [14742, 15990] versus 13,806 [13148,14466]; p = 0.0016). In addition, a 6% reduction was found in rest time after HMB supplementation compared to placebo (23,857 [23,130, 24,584], versus 25,363 [24500, 26225]; p = 0.0122). Creatine kinase was not statistically different between groups. We did not observe any adverse clinical or biochemical-related effects of HMB dosing. Daily HMB supplementation in DMD dogs can safely and positively influence protein and amino acid metabolism and improve overall daily activity.
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| | - Alexis M Rutledge
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Kyle Tehas
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Corine Kaderli
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Meredith Poling
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Sidney Arnim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Vitaliy Dernov
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Celine van Sas
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| | - Macie L Mackey
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Boehler JF, Brown KJ, Ricotti V, Morris CA. N-terminal titin fragment: a non-invasive, pharmacodynamic biomarker for microdystrophin efficacy. Skelet Muscle 2024; 14:2. [PMID: 38229112 PMCID: PMC10790446 DOI: 10.1186/s13395-023-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Multiple clinical trials to assess the efficacy of AAV-directed gene transfer in participants with Duchenne muscular dystrophy (DMD) are ongoing. The success of these trials currently relies on standard functional outcome measures that may exhibit variability within and between participants, rendering their use as sole measures of drug efficacy challenging. Given this, supportive objective biomarkers may be useful in enhancing observed clinical results. Creatine kinase (CK) is traditionally used as a diagnostic biomarker of DMD, but its potential as a robust pharmacodynamic (PD) biomarker is difficult due to the wide variability seen within the same participant over time. Thus, there is a need for the discovery and validation of novel PD biomarkers to further support and bolster traditional outcome measures of efficacy in DMD. METHOD Potential PD biomarkers in DMD participant urine were examined using a proteomic approach on the Somalogic platform. Findings were confirmed in both mdx mice and Golden Retriever muscular dystrophy (GRMD) dog plasma samples. RESULTS Changes in the N-terminal fragment of titin, a well-known, previously characterized biomarker of DMD, were correlated with the expression of microdystrophin protein in mice, dogs, and humans. Further, titin levels were sensitive to lower levels of expressed microdystrophin when compared to CK. CONCLUSION The measurement of objective PD biomarkers such as titin may provide additional confidence in the assessment of the mechanism of action and efficacy in gene therapy clinical trials of DMD. TRIAL REGISTRATION ClinicalTrials.gov NCT03368742.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA, 02129, USA.
| | - Kristy J Brown
- Rejuvenate Bio, 11425 Sorrento Valley Road, San Diego, CA, 92121, USA
| | - Valeria Ricotti
- National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre/University College London Great Ormond Street Institute of Child Health, London, UK
| | - Carl A Morris
- PHDL Consulting LLC, 43 Sylvanus Wood Lane, Woburn, MA, 01801, USA
| |
Collapse
|
3
|
Boehler JF, Brown KJ, Beatka M, Gonzalez JP, Donisa Dreghici R, Soustek-Kramer M, McGonigle S, Ganot A, Palmer T, Lowie C, Chamberlain JS, Lawlor MW, Morris CA. Clinical potential of microdystrophin as a surrogate endpoint. Neuromuscul Disord 2023; 33:40-49. [PMID: 36575103 DOI: 10.1016/j.nmd.2022.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Accelerated approval based on a likely surrogate endpoint can be life-changing for patients suffering from a rare progressive disease with unmet medical need, as it substantially hastens access to potentially lifesaving therapies. In one such example, antisense morpholinos were approved to treat Duchenne muscular dystrophy (DMD) based on measurement of shortened dystrophin in skeletal muscle biopsies as a surrogate biomarker. New, promising therapeutics for DMD include AAV gene therapy to restore another form of dystrophin termed mini- or microdystrophin. AAV-microdystrophins are currently in clinical trials but have yet to be accepted by regulatory agencies as reasonably likely surrogate endpoints. To evaluate microdystrophin expression as a reasonably likely surrogate endpoint for DMD, this review highlights dystrophin biology in the context of functional and clinical benefit to support the argument that microdystrophin proteins have a high probability of providing clinical benefit based on their rational design. Unlike exon-skipping based strategies, the approach of rational design allows for functional capabilities (i.e. quality) of the protein to be maximized with every patient receiving the same optimized microdystrophin. Therefore, the presence of rationally designed microdystrophin in a muscle biopsy is likely to predict clinical benefit and is consequently a strong candidate for a surrogate endpoint analysis to support accelerated approval.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Kristy J Brown
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Margaret Beatka
- Diverge TSL, 247 Freshwater Way Suite 610, Milwaukee, WI 53204, United States
| | - J Patrick Gonzalez
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | | | | | - Sharon McGonigle
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Annie Ganot
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Timothy Palmer
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Caitlin Lowie
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, United States
| | - Michael W Lawlor
- Diverge TSL, 247 Freshwater Way Suite 610, Milwaukee, WI 53204, United States
| | - Carl A Morris
- Solid Biosciences, 500 Rutherford Avenue 3rd Floor, Boston, MA 02129, United States.
| |
Collapse
|
4
|
Antisense and Gene Therapy Options for Duchenne Muscular Dystrophy Arising from Mutations in the N-Terminal Hotspot. Genes (Basel) 2022; 13:genes13020257. [PMID: 35205302 PMCID: PMC8872079 DOI: 10.3390/genes13020257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disease affecting children that is caused by a mutation in the gene encoding for dystrophin. In the absence of functional dystrophin, patients experience progressive muscle deterioration, leaving them wheelchair-bound by age 12 and with few patients surviving beyond their third decade of life as the disease advances and causes cardiac and respiratory difficulties. In recent years, an increasing number of antisense and gene therapies have been studied for the treatment of muscular dystrophy; however, few of these therapies focus on treating mutations arising in the N-terminal encoding region of the dystrophin gene. This review summarizes the current state of development of N-terminal antisense and gene therapies for DMD, mainly focusing on exon-skipping therapy for duplications and deletions, as well as microdystrophin therapy.
Collapse
|
5
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
6
|
From diagnosis to therapy in Duchenne muscular dystrophy. Biochem Soc Trans 2020; 48:813-821. [PMID: 32597486 PMCID: PMC7329342 DOI: 10.1042/bst20190282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Genetic approaches for the diagnosis and treatment of inherited muscle diseases have advanced rapidly in recent years. Many of the advances have occurred in the treatment of Duchenne muscular dystrophy (DMD), a muscle wasting disease where affected boys are typically wheelchair bound by age 12 years and generally die in their twenties from respiratory failure or cardiomyopathy. Dystrophin is a 421 kD protein which links F-actin to the extracellular matrix via the dystrophin-associated protein complex (DAPC) at the muscle membrane. In the absence of dystrophin, the DAPC is lost, making the muscle membrane more susceptible to contraction-induced injury. The identification of the gene causing DMD in 1986 resulted in improved diagnosis of the disease and the identification of hotspots for mutation. There is currently no effective treatment. However, there are several promising genetic therapeutic approaches at the preclinical stage or in clinical trials including read-through of stop codons, exon skipping, delivery of dystrophin minigenes and the modulation of expression of the dystrophin related protein, utrophin. In spite of significant progress, the problem of targeting all muscles, including diaphragm and heart at sufficiently high levels, remains a challenge. Any therapy also needs to consider the immune response and some treatments are mutation specific and therefore limited to a subgroup of patients. This short review provides a summary of the current status of DMD therapy with a particular focus on those genetic strategies that have been taken to the clinic.
Collapse
|