1
|
Ghirigato E, Terenzi F, Baglivo M, Zanetti N, Baldo F, Murru FM, Bobbo M, Barbi E, Zeviani M, Bruno I, Lamantea E. A new family with a case of severe early-onset muscle fatigue and a peculiar maternally inherited painful swelling in chewing muscles associated with homoplasmic m.15992A>T mutation in mitochondrial tRNA Pro. Neuromuscul Disord 2023; 33:972-977. [PMID: 38030461 DOI: 10.1016/j.nmd.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
A 16-year-old boy was evaluated for a history of exercise-induced fatigability associated with nausea even after minimal effort, lower limbs muscle hypotrophy, and swelling of the masseter muscles after chewing. Laboratory tests were remarkable for hyperlactatemia and metabolic acidosis after short physical activity. The muscle biopsy showed non-specific mitochondrial alterations and an increase in intrafibral lipids. Biochemical analysis showed reduced activity of the respiratory chain complexes. Mitochondrial DNA sequencing revealed the presence of a homoplasmic variant m.15992A>T in the MT-TP gene, coding for the mt-tRNAPro in the patient, in his mother and in his brother. Pathogenic or likely pathogenic variants in MT-TP gene are rare. They are responsible for different clinical presentation, almost ever involving the muscle tissue. We report the first family with exercise-induced muscle weakness and swelling of the chewing muscles due to m.15992A>T variant in absence of J1c10 haplogroup, confirming its pathogenicity.
Collapse
Affiliation(s)
| | | | - Mirko Baglivo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nadia Zanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Baldo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy.
| | - Flora Maria Murru
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marco Bobbo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Egidio Barbi
- University of Trieste, Italy; Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Massimo Zeviani
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Irene Bruno
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
2
|
Abstract
Progressive external ophthalmoplegia (PEO), characterized by ptosis and impaired eye movements, is a clinical syndrome with an expanding number of etiologically distinct subtypes. Advances in molecular genetics have revealed numerous pathogenic causes of PEO, originally heralded in 1988 by the detection of single large-scale deletions of mitochondrial DNA (mtDNA) in skeletal muscle of people with PEO and Kearns-Sayre syndrome. Since then, multiple point variants of mtDNA and nuclear genes have been identified to cause mitochondrial PEO and PEO-plus syndromes, including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and sensory ataxic neuropathy dysarthria ophthalmoplegia (SANDO). Intriguingly, many of those nuclear DNA pathogenic variants impair maintenance of the mitochondrial genome causing downstream mtDNA multiple deletions and depletion. In addition, numerous genetic causes of nonmitochondrial PEO have been identified.
Collapse
Affiliation(s)
- Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Neuromuscular Medicine Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States.
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
3
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Grechko AV, Orekhov AN. Role of the mtDNA Mutations and Mitophagy in Inflammaging. Int J Mol Sci 2022; 23:ijms23031323. [PMID: 35163247 PMCID: PMC8836173 DOI: 10.3390/ijms23031323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Ageing is an unavoidable multi-factorial process, characterised by a gradual decrease in physiological functionality and increasing vulnerability of the organism to environmental factors and pathogens, ending, eventually, in death. One of the most elaborated ageing theories implies a direct connection between ROS-mediated mtDNA damage and mutations. In this review, we focus on the role of mitochondrial metabolism, mitochondria generated ROS, mitochondrial dynamics and mitophagy in normal ageing and pathological conditions, such as inflammation. Also, a chronic form of inflammation, which could change the long-term status of the immune system in an age-dependent way, is discussed. Finally, the role of inflammaging in the most common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, is also discussed.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
4
|
Lim AZ, McMacken G, Rastelli F, Oláhová M, Baty K, Hopton S, Falkous G, Töpf A, Lochmüller H, Marini-Bettolo C, McFarland R, Taylor RW. A novel, pathogenic dinucleotide deletion in the mitochondrial MT-TY gene causing myasthenia-like features. Neuromuscul Disord 2020; 30:661-668. [PMID: 32684384 PMCID: PMC7477489 DOI: 10.1016/j.nmd.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA)-related diseases often pose a diagnostic challenge and require rigorous clinical and laboratory investigation. Pathogenic variants in the mitochondrial tRNA gene MT-TY, which encodes the tRNATyr, are a rare cause of mitochondrial disease. Here we describe a novel m.5860delTA anticodon variant in the MT-TY gene in a patient who initially presented with features akin to a childhood onset myasthenic syndrome. Using histochemical, immunohistochemical and protein studies we demonstrate that this mutation leads to severe biochemical defects of mitochondrial translation, which is reflected in the early onset and progressive phenotype. This case highlights the clinical overlap between mtDNA-related diseases and other neuromuscular disorders, and demonstrates the potential pitfalls in analysis of next generation sequencing results, given whole exome sequencing of a blood DNA sample failed to make a genetics diagnosis. Muscle biopsy remains an important requirement in the diagnosis of mitochondrial disease and in establishing the pathogenicity of novel mtDNA variants.
Collapse
Affiliation(s)
- Albert Z Lim
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Grace McMacken
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Department of Neurosciences, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Francesca Rastelli
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Karen Baty
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada; Division of Neurology, Department of Medicine, Ottawa University, Ottawa, Canada
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|