1
|
Mohammed SR, Gafoor S, Panday A. Acute myotonic reaction during succinylcholine anaesthesia. Pract Neurol 2023; 23:74-77. [PMID: 36192135 DOI: 10.1136/pn-2022-003352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 02/02/2023]
Abstract
A 21-year-old woman developed an acute myotonic reaction while undergoing anaesthesia using succinylcholine. Examination later showed she had shoulder, neck and calf hypertrophy, bilateral symmetrical ptosis and eyelid, handgrip and percussion myotonia. Peripheral neurophysiology studies identified significant, continuous myotonic discharges in both upper and lower limbs. Genetic analysis identified a c.3917G>A (p.Gly1306Glu) mutation in the SCN4A gene, confirming a diagnosis of sodium channel myotonia. Succinylcholine and other depolarising agents can precipitate life-threatening acute myotonic reactions when given to patients with myotonia. Patients with neuromuscular disorders are at an increased risk of perioperative anaesthetic complications. We report a woman who developed an acute myotonic reaction whilst undergoing anaesthesia, in the context of an unrecognised myotonic disorder. We then discuss an approach to the diagnosis of myotonic disorders.
Collapse
Affiliation(s)
- Saeed Rashaad Mohammed
- Department of Clinical Medical Sciences, The University of the West Indies at St Augustine Faculty of Medical Sciences, St Augustine, Trinidad and Tobago
| | - Stefan Gafoor
- Department of Medicine, Eric Williams Medical Sciences Complex Compound, Champ Fleurs, Trinidad and Tobago
| | - Avidesh Panday
- Department of Clinical Medical Sciences, The University of the West Indies at St Augustine Faculty of Medical Sciences, St Augustine, Trinidad and Tobago
| |
Collapse
|
2
|
Xu L, Wang G, Lv X, Zhang D, Yan C, Lin P. A novel mutation in HINT1 gene causes autosomal recessive axonal neuropathy with neuromyotonia, effective treatment with carbamazepine and review of the literature. Acta Neurol Belg 2022; 122:1305-1312. [PMID: 35767146 DOI: 10.1007/s13760-022-02006-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Autosomal recessive axonal neuropathy with neuromyotonia (ARAN-NM) is a rare disease entity linked to mutations in the histidine triad nucleotide binding protein 1 (HINT1) gene. The diagnosis and treatment of ARAN-NM are challenging. There have been few reports of ARAN-NM in East Asia. METHODS A 15-year-old Chinese ARAN-NM patient developed muscle weakness, cramps and atrophy in the lower limbs at the age of 12. Electromyography (EMG) showed motor axonal degeneration and neuromyotonic discharges. Whole exome sequencing was performed. Bioinformatic methods and computational 3D structure modeling were used to analyze the identified variant. According to literature review, carbamazepine was prescribed to the patient. RESULTS Genetic tests identified a homozygous mutation c.356G > T (p.R119L) in the HINT1 gene, which has never been reported before according to HGMD database. Several bioinformatic approaches predicted the variant was damaging. Computational 3D modeling indicated the variant changed the structure of HINT1 protein. Notably, we demonstrated the positive effects of carbamazepine in treating muscle stiffness and cramps of ARAN-NM. DISCUSSION 22 variants have been reported in the HINT1 gene, and we identified a novel c.356G > T (p.R119L) variant. Our study expands the genetic spectrum of ARAN-NM. Moreover, large clinical trials are required to further demonstrate the role of carbamazepine in ARAN-NM.
Collapse
Affiliation(s)
- Ling Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Guangyu Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoqing Lv
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Dong Zhang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Fullam TR, Chandrashekhar S, Farmakidis C, Jawdat O, Pasnoor M, Dimachkie MM, Statland JM. Non-dystrophic myotonia: 2-year clinical and patient reported outcomes. Muscle Nerve 2022; 66:148-158. [PMID: 35644941 PMCID: PMC9308727 DOI: 10.1002/mus.27649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS Consistency of differences between non-dystrophic myotonias over time measured by standardized clinical/patient-reported outcomes is lacking. Evaluation of longitudinal data could establish clinically relevant endpoints for future research. METHODS Data from prospective observational study of 95 definite/clinically suspected non-dystrophic myotonia participants (six sites in the United States, United Kingdom, and Canada) between March 2006 and March 2009 were analyzed. Outcomes included: standardized symptom interview/exam, Short Form-36, Individualized Neuromuscular Quality of Life (INQoL), electrophysiological short/prolonged exercise tests, manual muscle testing, quantitative grip strength, modified get-up-and-go test. Patterns were assigned as described by Fournier et al. Comparisons were restricted to confirmed sodium channelopathies (SCN4A, baseline, year 1, year 2: n = 34, 19, 13), chloride channelopathies (CLCN1, n = 32, 26, 18), and myotonic dystrophy type 2 (DM2, n = 9, 6, 2). RESULTS Muscle stiffness was the most frequent symptom over time (54.7%-64.7%). Eyelid myotonia and paradoxical handgrip/eyelid myotonia were more frequent in SCN4A. Grip strength and combined manual muscle testing remained stable. Modified get-up-and-go showed less warm up in SCN4A but remained stable. Median post short exercise decrement was stable, except for SCN4A (baseline to year 2 decrement difference 16.6% [Q1, Q3: 9.5, 39.2]). Fournier patterns type 2 (CLCN1) and 1 (SCN4A) were most specific; 40.4% of participants had a change in pattern over time. INQoL showed higher impact for SCN4A and DM2 with scores stable over time. DISCUSSION Symptom frequency and clinical outcome assessments were stable with defined variability in myotonia measures supporting trial designs like cross over or combined n-of-1 as important for rare disorders.
Collapse
Affiliation(s)
- Timothy R Fullam
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Neurology, Brooke Army Medical Center, JBSA-Fort Sam, Houston, Texas, USA
| | - Swathy Chandrashekhar
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Omar Jawdat
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | |
Collapse
|
4
|
Altamura C, Fonzino A, Tarantino N, Conte E, Liantonio A, Imbrici P, Carratù MR, Pierno S, Desaphy JF. Increased sarcolemma chloride conductance as one of the mechanisms of action of carbonic anhydrase inhibitors in muscle excitability disorders. Exp Neurol 2021; 342:113758. [PMID: 33991525 DOI: 10.1016/j.expneurol.2021.113758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
To get insight into the mechanism of action of carbonic anhydrase inhibitors (CAI) in neuromuscular disorders, we investigated effects of dichlorphenamide (DCP) and acetazolamide (ACTZ) on ClC-1 chloride channels and skeletal muscle excitability. We performed patch-clamp experiments to test drugs on chloride currents in HEK293T cells transfected with hClC-1. Using the two-intracellular microelectrode technique in current-clamp mode, we measured the effects of drugs on the resting chloride conductance and action potential properties of sarcolemma in rat and mouse skeletal muscle fibers. Using BCECF dye fluorometry, we measured the effects of ACTZ on intracellular pH in single rat muscle fibers. Similarly to ACTZ, DCP (100 μM) increased hClC-1 chloride currents in HEK cells, because of the negative shift of the open probability voltage dependence and the slowing of deactivation kinetics. Bendroflumethiazide (BFT, 100 μM), structurally related to DCP but lacking activity on carbonic anhydrase, had little effects on chloride currents. In isolated rat muscle fibers, 50-100 μM of ACTZ or DCP, but not BFT, induced a ~ 20% increase of the resting chloride conductance. ACTZ reduced action potential firing in mouse muscle fibers. ACTZ (100 μM) reduced intracellular pH to 6.8 in rat muscle fibers. These results suggest that carbonic anhydrase inhibitors can reduce muscle excitability by increasing ClC-1 channel activity, probably through intracellular acidification. Such a mechanism may contribute in part to the clinical effects of these drugs in myotonia and other muscle excitability disorders.
Collapse
Affiliation(s)
- Concetta Altamura
- Section of Pharmacology, Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Nancy Tarantino
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Liantonio
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Rosaria Carratù
- Section of Pharmacology, Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
5
|
Ritter DM, Tian C, Broomall E. Treatment of SCN4A-induced myotonic crisis. Muscle Nerve 2021; 63:E59-E61. [PMID: 33745142 DOI: 10.1002/mus.27237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022]
Affiliation(s)
- David M Ritter
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Cuixia Tian
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Eileen Broomall
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Desaphy JF, Altamura C, Vicart S, Fontaine B. Targeted Therapies for Skeletal Muscle Ion Channelopathies: Systematic Review and Steps Towards Precision Medicine. J Neuromuscul Dis 2021; 8:357-381. [PMID: 33325393 PMCID: PMC8203248 DOI: 10.3233/jnd-200582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle ion channelopathies include non-dystrophic myotonias (NDM), periodic paralyses (PP), congenital myasthenic syndrome, and recently identified congenital myopathies. The treatment of these diseases is mainly symptomatic, aimed at reducing muscle excitability in NDM or modifying triggers of attacks in PP. OBJECTIVE This systematic review collected the evidences regarding effects of pharmacological treatment on muscle ion channelopathies, focusing on the possible link between treatments and genetic background. METHODS We searched databases for randomized clinical trials (RCT) and other human studies reporting pharmacological treatments. Preclinical studies were considered to gain further information regarding mutation-dependent drug effects. All steps were performed by two independent investigators, while two others critically reviewed the entire process. RESULTS For NMD, RCT showed therapeutic benefits of mexiletine and lamotrigine, while other human studies suggest some efficacy of various sodium channel blockers and of the carbonic anhydrase inhibitor (CAI) acetazolamide. Preclinical studies suggest that mutations may alter sensitivity of the channel to sodium channel blockers in vitro, which has been translated to humans in some cases. For hyperkalemic and hypokalemic PP, RCT showed efficacy of the CAI dichlorphenamide in preventing paralysis. However, hypokalemic PP patients carrying sodium channel mutations may have fewer benefits from CAI compared to those carrying calcium channel mutations. Few data are available for treatment of congenital myopathies. CONCLUSIONS These studies provided limited information about the response to treatments of individual mutations or groups of mutations. A major effort is needed to perform human studies for designing a mutation-driven precision medicine in muscle ion channelopathies.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Savine Vicart
- Sorbonne Université, INSERM, Assistance Publique Hôpitaux de Paris, Centre de Recherche en Myologie-UMR 974, Reference center in neuro-muscular channelopathies, Institute of Myology, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Bertrand Fontaine
- Sorbonne Université, INSERM, Assistance Publique Hôpitaux de Paris, Centre de Recherche en Myologie-UMR 974, Reference center in neuro-muscular channelopathies, Institute of Myology, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| |
Collapse
|