1
|
van Kleef ESB, van de Camp SAJH, Groothuis JT, Erasmus CE, Gaytant MA, Vosse BAH, de Weerd W, Verschuuren-Bemelmans CC, Medici-Van den Herik EG, Wallgren-Pettersson C, Küsters B, Schouten M, van Engelen BGM, Ottenheijm CAC, Doorduin J, Voermans NC. A cross-sectional study in 18 patients with typical and mild forms of nemaline myopathy in the Netherlands. Neuromuscul Disord 2024; 43:29-38. [PMID: 39180840 DOI: 10.1016/j.nmd.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Nemaline myopathy (NM) is a congenital myopathy with generalised muscle weakness, most pronounced in neck flexor, bulbar and respiratory muscles. The aim of this cross-sectional study was to assess the Dutch NM patient cohort. We assessed medical history, physical examination, quality of life (QoL), fatigue severity, motor function (MFM), and respiratory muscle function. We included 18 of the 28 identified patients (13 females (11-67 years old); five males (31-74 years old)) with typical or mild NM and eight different genotypes. Nine patients (50 %) used a wheelchair, eight patients (44 %) used mechanical ventilation, and four patients (22 %) were on tube feeding. Spinal deformities were found in 14 patients (78 %). The median Medical Research Council (MRC) sum score was 38/60 [interquartile range 32-51] in typical and 48/60 [44-50] in mild NM. The experienced QoL was lower and fatigue severity was higher than reference values of the healthy population. The total MFM score was 55 % [49-94] in typical and 88 % [72-93] in mild NM. Most of the patients who performed spirometry had a restrictive lung function pattern (11/15). This identification and characterisation of the Dutch NM patient cohort is important for international collaboration and can guide the design of future clinical trials.
Collapse
Affiliation(s)
- Esmee S B van Kleef
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Sanne A J H van de Camp
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Jan T Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Nijmegen, the Netherlands
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center- Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michael A Gaytant
- Center for Home Mechanical Ventilation, Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bettine A H Vosse
- Department of Pulmonary Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Willemien de Weerd
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Evita G Medici-Van den Herik
- Department of Paediatric Neurology Erasmus MC- Sophia Children's Hospital, University Medical Center Rotterdam, the Netherlands
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Meyke Schouten
- Department of Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands.
| |
Collapse
|
2
|
Karimi E, Gohlke J, van der Borgh M, Lindqvist J, Hourani Z, Kolb J, Cossette S, Lawlor MW, Ottenheijm C, Granzier H. Characterization of NEB pathogenic variants in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects. Acta Neuropathol 2024; 147:72. [PMID: 38634969 PMCID: PMC11026289 DOI: 10.1007/s00401-024-02726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Pathogenic variants in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking curative therapies. In this study, we examined a cohort of ten NEM2 patients, each with unique pathogenic variants, aiming to understand their impact on mRNA, protein, and functional levels. Results show that pathogenic truncation variants affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with pathogenic splicing variants that are expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with either relatively normal or markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, or reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a pathogenic duplication variant in nebulin that resulted in a four-copy gain in the triplicate region of NEB and a much larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type 1 muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87 to 318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from pathogenic splicing variants. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.
Collapse
Affiliation(s)
- Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Mila van der Borgh
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Stacy Cossette
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Department of Physiology, Amsterdam UMC (Location VUMC), Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Karimi E, van der Borgh M, Lindqvist J, Gohlke J, Hourani Z, Kolb J, Cossette S, Lawlor MW, Ottenheijm C, Granzier H. Characterization of NEB mutations in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572678. [PMID: 38187705 PMCID: PMC10769406 DOI: 10.1101/2023.12.20.572678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Mutations in the nebulin gene ( NEB ) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking therapies targeting the underlying pathological mechanisms. In this study, we examined a cohort of ten NEM2 patients, each with unique mutations, aiming to understand their impact on mRNA, protein, and functional levels. Results show that truncation mutations affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with splicing mutations which is expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with relatively normal nebulin levels and others with markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, and a positive relation between the reduction in nebulin level and the reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a duplication mutation in nebulin that resulted in a larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type I muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87-318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from splicing mutations. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.
Collapse
|
4
|
Lindqvist J, Granzier H. Pharmacological Inhibition of Myostatin in a Mouse Model of Typical Nemaline Myopathy Increases Muscle Size and Force. Int J Mol Sci 2023; 24:15124. [PMID: 37894805 PMCID: PMC10606666 DOI: 10.3390/ijms242015124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Nemaline myopathy is one of the most common non-dystrophic congenital myopathies. Individuals affected by this condition experience muscle weakness and muscle smallness, often requiring supportive measures like wheelchairs or respiratory support. A significant proportion of patients, approximately one-third, exhibit compound heterozygous nebulin mutations, which usually give rise to the typical form of the disease. Currently, there are no approved treatments available for nemaline myopathy. Our research explored the modulation of myostatin, a negative regulator of muscle mass, in combating the muscle smallness associated with the disease. To investigate the effect of myostatin inhibition, we employed a mouse model with compound heterozygous nebulin mutations that mimic the typical form of the disease. The mice were treated with mRK35, a myostatin antibody, through weekly intraperitoneal injections of 10 mg/kg mRK35, commencing at two weeks of age and continuing until the mice reached four months of age. The treatment resulted in an increase in body weight and an approximate 20% muscle weight gain across most skeletal muscles, without affecting the heart. The minimum Feret diameter of type IIA and IIB fibers exhibited an increase in compound heterozygous mice, while only type IIB fibers demonstrated an increase in wild-type mice. In vitro mechanical experiments conducted on intact extensor digitorum longus muscle revealed that mRK35 augmented the physiological cross-sectional area of muscle fibers and enhanced absolute tetanic force in both wild-type and compound heterozygous mice. Furthermore, mRK35 administration improved grip strength in treated mice. Collectively, these findings indicate that inhibiting myostatin can mitigate the muscle deficits in nebulin-based typical nemaline myopathy, potentially serving as a much-needed therapeutic option.
Collapse
Affiliation(s)
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
5
|
van Kleef ES, Langer D, van Engelen BG, Ottenheijm CA, Voermans NC, Doorduin J. Inspiratory Muscle Training in Nemaline Myopathy. J Neuromuscul Dis 2023; 10:825-834. [PMID: 37458044 PMCID: PMC10578271 DOI: 10.3233/jnd-221665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Respiratory muscle weakness is a common feature in nemaline myopathy. Inspiratory muscle training (IMT) is an intervention that aims to improve inspiratory muscle strength. OBJECTIVE The aim of this controlled before-and-after pilot study was to investigate if IMT improves respiratory muscle strength in patients with nemaline myopathy. METHODS Nine patients (7 females; 2 males, age 36.6±20.5 years) with respiratory muscle weakness and different clinical phenotypes and genotypes were included. Patients performed eight weeks of sham IMT followed by eight weeks of active threshold IMT. The patients trained twice a day five days a week for 15 minutes at home. The intensity was constant during the training after a gradual increase to 30% of maximal inspiratory pressure (MIP). RESULTS Active IMT significantly improved MIP from 43±15.9 to 47±16.6 cmH2O (p = 0.019). The effect size was 1.22. There was no significant effect of sham IMT. Sniff nasal inspiratory pressure, maximal expiratory pressure, spirometry, and diaphragm thickness and thickening showed no significant improvements. CONCLUSIONS This pilot study shows that threshold IMT is feasible in patients with nemaline myopathy and improves inspiratory muscle strength. Our findings provide valuable preliminary data for the design of a larger, more comprehensive trial.
Collapse
Affiliation(s)
- Esmee S.B. van Kleef
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel Langer
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Cardiovascular and Respiratory Rehabilitation, KU Leuven - University of Leuven, Leuven, Belgium
- Respiratory Rehabilitation and Respiratory Division, University Hospitals Leuven, Leuven, Belgium
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen A.C. Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Fisher G, Mackels L, Markati T, Sarkozy A, Ochala J, Jungbluth H, Ramdas S, Servais L. Early clinical and pre-clinical therapy development in Nemaline myopathy. Expert Opin Ther Targets 2022; 26:853-867. [PMID: 36524401 DOI: 10.1080/14728222.2022.2157258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Collapse
Affiliation(s)
- Gemma Fisher
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurane Mackels
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| | - Theodora Markati
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
7
|
van Kleef ES, van Doorn JL, Gaytant MA, de Weerd W, Vosse BA, Wallgren-Pettersson C, van Engelen BG, Ottenheijm CA, Voermans NC, Doorduin J. Respiratory muscle function in patients with nemaline myopathy. Neuromuscul Disord 2022; 32:654-663. [DOI: 10.1016/j.nmd.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
8
|
Mubaraki AA. Nemaline Myopathy: A Case Report. Case Rep Neurol 2021; 13:499-503. [PMID: 34413753 PMCID: PMC8339453 DOI: 10.1159/000517898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Generalized weakness in the pediatric and adolescent population is caused by many disorders that affect the neuromuscular axis. As next-generation sequencing (NGS) is becoming of high yield in replacing more invasive procedures, that is, muscle and nerve biopsy, more previously undiagnosed diseases of the muscles are now labeled with specific pathogenicity. A 16-year-old-girl diagnosed with nemaline myopathy but previously was misdiagnosed with congenital myasthenia and put-on unnecessary medications. Clinicians should be aware of congenital diseases that affect the muscles and know the importance of the NGS in reaching the correct diagnosis more so when there is a history of consanguinity.
Collapse
Affiliation(s)
- Adnan A Mubaraki
- Department of Medicine, Taif University, College of Medicine, Taif, Saudi Arabia
| |
Collapse
|