1
|
Argueti-Ostrovsky S, Barel S, Kahn J, Israelson A. VDAC1: A Key Player in the Mitochondrial Landscape of Neurodegeneration. Biomolecules 2024; 15:33. [PMID: 39858428 PMCID: PMC11762377 DOI: 10.3390/biom15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration. Accordingly, increasing evidence suggests that VDAC1 is implicated in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and others. This review summarizes the current findings on the contribution of VDAC1 to neurodegeneration, focusing on its interactions with disease-specific proteins, such as amyloid-β, α-synuclein, and mutant SOD1. By unraveling the complex involvement of VDAC1 in neurodegenerative processes, this review highlights potential avenues for future research and drug development aimed at alleviating mitochondrial-related neurodegeneration.
Collapse
Affiliation(s)
- Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Shir Barel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Basak S, Biswas N, Gill J, Ashili S. Spinal Muscular Atrophy: Current Medications and Re-purposed Drugs. Cell Mol Neurobiol 2024; 44:75. [PMID: 39514016 PMCID: PMC11549153 DOI: 10.1007/s10571-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic neuromuscular disorder that is characterized by gradual muscle weakness and atrophy due to the degeneration of alpha motor neurons that are present on the anterior horn of the spinal cord. Despite the comprehensive investigations conducted by global scientists, effective treatments or interventions remain elusive. The time- and resource-intensive nature of the initial stages of drug research underscores the need for alternate strategies like drug repurposing. This review explores the repurposed drugs that have shown some improvement in treating SMA, including branaplam, riluzole, olesoxime, harmine, and prednisolone. The current strategy for medication repurposing, however, lacks systematicity and frequently depends more on serendipitous discoveries than on organized approaches. To speed up the development of successful therapeutic interventions, it is apparent that a methodical approach targeting the molecular origins of SMA is strictly required.
Collapse
Affiliation(s)
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India.
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA.
| | - Jaya Gill
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA
| | | |
Collapse
|
3
|
Ilzorkina AI, Belosludtseva NV, Semenova AA, Dubinin MV, Belosludtsev KN. The Effect of TRO19622 (Olesoxime) on the Functional Activity of Isolated Mitochondria and Cell Viability. Biophysics (Nagoya-shi) 2024; 69:630-638. [DOI: 10.1134/s0006350924700714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 05/04/2025] Open
|
4
|
Adami R, Pezzotta M, Cadile F, Cuniolo B, Rovati G, Canepari M, Bottai D. Physiological Features of the Neural Stem Cells Obtained from an Animal Model of Spinal Muscular Atrophy and Their Response to Antioxidant Curcumin. Int J Mol Sci 2024; 25:8364. [PMID: 39125934 PMCID: PMC11313061 DOI: 10.3390/ijms25158364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules.
Collapse
Affiliation(s)
- Raffaella Adami
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Matteo Pezzotta
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Francesca Cadile
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (F.C.); (M.C.)
| | - Beatrice Cuniolo
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Gianenrico Rovati
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Monica Canepari
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (F.C.); (M.C.)
| | - Daniele Bottai
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| |
Collapse
|
5
|
Kolić D, Šinko G, Jean L, Chioua M, Dias J, Marco-Contelles J, Kovarik Z. Cholesterol Oxime Olesoxime Assessed as a Potential Ligand of Human Cholinesterases. Biomolecules 2024; 14:588. [PMID: 38785995 PMCID: PMC11117805 DOI: 10.3390/biom14050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.
Collapse
Affiliation(s)
- Dora Kolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia; (D.K.); (G.Š.)
| | - Goran Šinko
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia; (D.K.); (G.Š.)
| | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoM, F-75006 Paris, France;
| | - Mourad Chioua
- Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - José Dias
- Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, Paris, France;
| | - José Marco-Contelles
- Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia; (D.K.); (G.Š.)
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Fay A. Spinal Muscular Atrophy: A (Now) Treatable Neurodegenerative Disease. Pediatr Clin North Am 2023; 70:963-977. [PMID: 37704354 DOI: 10.1016/j.pcl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Spinal muscular atrophy (SMA) is a progressive disease of the lower motor neurons associated with recessive loss of the SMN1 gene, and which leads to worsening weakness and disability, and is fatal in its most severe forms. Over the past six years, three treatments have emerged, two drugs that modify exon splicing and one gene therapy, which have transformed the management of this disease. When treated pre-symptomatically, many children show normal early motor development, and the benefits extend from the newborn period to adulthood. Similar treatment approaches are now under investigation for rare types of SMA associated with genes beyond SMN1.
Collapse
Affiliation(s)
- Alex Fay
- University of California, San Francisco, 1875 4th Street., Suite 5A, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Soini V, Schreiber G, Wilken B, Hell AK. Early Development of Spinal Deformities in Children Severely Affected with Spinal Muscular Atrophy after Gene Therapy with Onasemnogene Abeparvovec-Preliminary Results. CHILDREN (BASEL, SWITZERLAND) 2023; 10:998. [PMID: 37371230 DOI: 10.3390/children10060998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Spinal muscular atrophy (SMA) is a rare genetic disorder, with the most common form being 5q SMA. Survival of children with severe SMA is poor, yet major advances have been made in recent years in pharmaceutical treatment, such as gene-therapy, which has improved patient survival. Therefore, clinical problems, such as the development of spinal deformities in these genetically treated SMA children represent an unknown challenge in clinical work. In a retrospective case series, the development of spinal deformities was analyzed in 16 SMA children (9 male, 7 female) treated with onasemnogene abeparvovec in two institutions during the years 2020 to 2022. Ten out of sixteen patients had a significant kyphosis, and nine out of sixteen patients had significant scoliosis, with the mean curvature angles of 24 ± 27° for scoliosis, and 69 ± 15° for kyphosis. Based on these preliminary data, it can be assumed that early-onset kyphosis presents a clinical challenge in gene-therapy-treated SMA children. Larger datasets with longer follow-up times need to be collected in order to verify these preliminary observations.
Collapse
Affiliation(s)
- Venla Soini
- Paediatric Orthopaedics, Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Paediatric Surgery and Paediatric Orthopaedic Surgery, University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Gudrun Schreiber
- Department of Pediatric Neurology, Social Pediatric Center, Medical Center Kassel, 34127 Kassel, Germany
| | - Bernd Wilken
- Department of Pediatric Neurology, Social Pediatric Center, Medical Center Kassel, 34127 Kassel, Germany
| | - Anna Kathrin Hell
- Paediatric Orthopaedics, Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
8
|
Pathophysiology and Management of Fatigue in Neuromuscular Diseases. Int J Mol Sci 2023; 24:ijms24055005. [PMID: 36902435 PMCID: PMC10003182 DOI: 10.3390/ijms24055005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Fatigue is a major determinant of quality of life and motor function in patients affected by several neuromuscular diseases, each of them characterized by a peculiar physiopathology and the involvement of numerous interplaying factors. This narrative review aims to provide an overview on the pathophysiology of fatigue at a biochemical and molecular level with regard to muscular dystrophies, metabolic myopathies, and primary mitochondrial disorders with a focus on mitochondrial myopathies and spinal muscular atrophy, which, although fulfilling the definition of rare diseases, as a group represent a representative ensemble of neuromuscular disorders that the neurologist may encounter in clinical practice. The current use of clinical and instrumental tools for fatigue assessment, and their significance, is discussed. A summary of therapeutic approaches to address fatigue, encompassing pharmacological treatment and physical exercise, is also overviewed.
Collapse
|
9
|
Chiriboga CA, Bruno C, Duong T, Fischer D, Mercuri E, Kirschner J, Kostera-Pruszczyk A, Jaber B, Gorni K, Kletzl H, Carruthers I, Martin C, Warren F, Scalco RS, Wagner KR, Muntoni F, the JEWELFISH Study Group. Risdiplam in Patients Previously Treated with Other Therapies for Spinal Muscular Atrophy: An Interim Analysis from the JEWELFISH Study. Neurol Ther 2023; 12:543-557. [PMID: 36780114 PMCID: PMC9924181 DOI: 10.1007/s40120-023-00444-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
INTRODUCTION Risdiplam is a survival of motor neuron 2 (SMN2) splicing modifier for the treatment of patients with spinal muscular atrophy (SMA). The JEWELFISH study (NCT03032172) was designed to assess the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of risdiplam in previously treated pediatric and adult patients with types 1-3 SMA. Here, an analysis was performed after all patients had received at least 1 year of treatment with risdiplam. METHODS Patients with a confirmed diagnosis of 5q-autosomal recessive SMA between the ages of 6 months and 60 years were eligible for enrollment. Patients were previously enrolled in the MOONFISH study (NCT02240355) with splicing modifier RG7800 or treated with olesoxime, nusinersen, or onasemnogene abeparvovec. The primary objectives of the JEWELFISH study were to evaluate the safety and tolerability of risdiplam and investigate the PK after 2 years of treatment. RESULTS A total of 174 patients enrolled: MOONFISH study (n = 13), olesoxime (n = 71 patients), nusinersen (n = 76), onasemnogene abeparvovec (n = 14). Most patients (78%) had three SMN2 copies. The median age and weight of patients at enrollment was 14.0 years (1-60 years) and 39.1 kg (9.2-108.9 kg), respectively. About 63% of patients aged 2-60 years had a baseline total score of less than 10 on the Hammersmith Functional Motor Scale-Expanded and 83% had scoliosis. The most common adverse event (AE) was upper respiratory tract infection and pyrexia (30 patients each; 17%). Pneumonia (four patients; 2%) was the most frequently reported serious AE (SAE). The rates of AEs and SAEs per 100 patient-years were lower in the second 6-month period compared with the first. An increase in SMN protein was observed in blood after risdiplam treatment and was comparable across all ages and body weight quartiles. CONCLUSIONS The safety and PD of risdiplam in patients who were previously treated were consistent with those of treatment-naïve patients.
Collapse
Affiliation(s)
- Claudia A. Chiriboga
- Department of Neurology, Columbia University Irving Medical Center, 180 Fort Washington Avenue # 552, New York, NY 10032-3791 USA
| | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-DINOGMI, University of Genoa, Genoa, Italy
| | - Tina Duong
- Department of Neurology, Stanford University, Palo Alto, CA USA
| | - Dirk Fischer
- Division of Neuropediatrics, University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Eugenio Mercuri
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland ,ERN EURO-NMD, Warsaw, Poland
| | - Birgit Jaber
- Pharma Development, Safety, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ksenija Gorni
- PDMA Neuroscience and Rare Disease, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Heidemarie Kletzl
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | - Renata S. Scalco
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kathryn R. Wagner
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London, UK
| | | |
Collapse
|
10
|
A link between agrin signalling and Ca v3.2 at the neuromuscular junction in spinal muscular atrophy. Sci Rep 2022; 12:18960. [PMID: 36347955 PMCID: PMC9643518 DOI: 10.1038/s41598-022-23703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
SMN protein deficiency causes motoneuron disease spinal muscular atrophy (SMA). SMN-based therapies improve patient motor symptoms to variable degrees. An early hallmark of SMA is the perturbation of the neuromuscular junction (NMJ), a synapse between a motoneuron and muscle cell. NMJ formation depends on acetylcholine receptor (AChR) clustering triggered by agrin and its co-receptors lipoprotein receptor-related protein 4 (LRP4) and transmembrane muscle-specific kinase (MuSK) signalling pathway. We have previously shown that flunarizine improves NMJs in SMA model mice, but the mechanisms remain elusive. We show here that flunarizine promotes AChR clustering in cell-autonomous, dose- and agrin-dependent manners in C2C12 myotubes. This is associated with an increase in protein levels of LRP4, integrin-beta-1 and alpha-dystroglycan, three agrin co-receptors. Furthermore, flunarizine enhances MuSK interaction with integrin-beta-1 and phosphotyrosines. Moreover, the drug acts on the expression and splicing of Agrn and Cacna1h genes in a muscle-specific manner. We reveal that the Cacna1h encoded protein Cav3.2 closely associates in vitro with the agrin co-receptor LRP4. In vivo, it is enriched nearby NMJs during neonatal development and the drug increases this immunolabelling in SMA muscles. Thus, flunarizine modulates key players of the NMJ and identifies Cav3.2 as a new protein involved in the NMJ biology.
Collapse
|
11
|
Day JW, Howell K, Place A, Long K, Rossello J, Kertesz N, Nomikos G. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr 2022; 22:632. [PMID: 36329412 PMCID: PMC9632131 DOI: 10.1186/s12887-022-03671-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy (5q-SMA; SMA), a genetic neuromuscular condition affecting spinal motor neurons, is caused by defects in both copies of the SMN1 gene that produces survival motor neuron (SMN) protein. The highly homologous SMN2 gene primarily expresses a rapidly degraded isoform of SMN protein that causes anterior horn cell degeneration, progressive motor neuron loss, skeletal muscle atrophy and weakness. Severe cases result in limited mobility and ventilatory insufficiency. Untreated SMA is the leading genetic cause of death in young children. Recently, three therapeutics that increase SMN protein levels in patients with SMA have provided incremental improvements in motor function and developmental milestones and prevented the worsening of SMA symptoms. While the therapeutic approaches with Spinraza®, Zolgensma®, and Evrysdi® have a clinically significant impact, they are not curative. For many patients, there remains a significant disease burden. A potential combination therapy under development for SMA targets myostatin, a negative regulator of muscle mass and strength. Myostatin inhibition in animal models increases muscle mass and function. Apitegromab is an investigational, fully human, monoclonal antibody that specifically binds to proforms of myostatin, promyostatin and latent myostatin, thereby inhibiting myostatin activation. A recently completed phase 2 trial demonstrated the potential clinical benefit of apitegromab by improving or stabilizing motor function in patients with Type 2 and Type 3 SMA and providing positive proof-of-concept for myostatin inhibition as a target for managing SMA. The primary goal of this manuscript is to orient physicians to the evolving landscape of SMA treatment.
Collapse
Affiliation(s)
- John W Day
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Kelly Howell
- Spinal Muscular Atrophy Foundation, New York, NY, USA
| | | | | | - Jose Rossello
- Scholar Rock, Inc, 301 Binney St, Cambridge, MA, USA
| | | | | |
Collapse
|
12
|
Zilio E, Piano V, Wirth B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2022; 23:10878. [PMID: 36142791 PMCID: PMC9503857 DOI: 10.3390/ijms231810878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by recessive mutations in the SMN1 gene, globally affecting ~8-14 newborns per 100,000. The severity of the disease depends on the residual levels of functional survival of motor neuron protein, SMN. SMN is a ubiquitously expressed RNA binding protein involved in a plethora of cellular processes. In this review, we discuss the effects of SMN loss on mitochondrial functions in the neuronal and muscular systems that are the most affected in patients with spinal muscular atrophy. Our aim is to highlight how mitochondrial defects may contribute to disease progression and how restoring mitochondrial functionality may be a promising approach to develop new therapies. We also collected from previous studies a list of transcripts encoding mitochondrial proteins affected in various SMA models. Moreover, we speculate that in adulthood, when motor neurons require only very low SMN levels, the natural deterioration of mitochondria associated with aging may be a crucial triggering factor for adult spinal muscular atrophy, and this requires particular attention for therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Valentina Piano
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
13
|
Mercuri E, Baranello G, Boespflug-Tanguy O, De Waele L, Goemans N, Kirschner J, Masson R, Mazzone ES, Pechmann A, Pera MC, Vuillerot C, Bader-Weder S, Gerber M, Gorni K, Hoffart J, Kletzl H, Martin C, McIver T, Scalco RS, Yeung WY, Servais L. Risdiplam in Types 2 and 3 spinal muscular atrophy: a randomised, placebo-controlled, dose-finding trial followed by 24 months of treatment. Eur J Neurol 2022. [PMID: 35837793 DOI: 10.1111/ene.15499] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by reduced levels of survival of motor neuron (SMN) protein due to deletions and/or mutations in the SMN1 gene. Risdiplam is an orally administered molecule that modifies SMN2 pre-mRNA splicing to increase functional SMN protein. METHODS SUNFISH Part 1 was a dose-finding study conducted in 51 individuals with Types 2 and 3 SMA aged 2-25 years. A dose-escalation method was used to identify the appropriate dose for the subsequent pivotal Part 2. Individuals were randomised (2:1) to risdiplam or placebo at escalating dose levels for a minimum 12-week, double-blind, placebo-controlled period, followed by treatment for 24 months. The dose selection for Part 2 was based on safety, tolerability, pharmacokinetic and pharmacodynamic data. Exploratory efficacy was also measured. RESULTS There was no difference in safety findings for all assessed dose levels. A dose-dependent increase in blood SMN protein was observed; a median two-fold increase was obtained within 4 weeks of treatment initiation at the highest dose level. The increase in SMN protein was sustained over 24 months of treatment. Exploratory efficacy showed improvement or stabilisation in motor function. The pivotal dose selected for Part 2 was 5 mg for patients with a body weight ≥20 kg or 0.25 mg/kg for patients <20 kg. CONCLUSIONS SUNFISH Part 1 demonstrated a two-fold increase in SMN protein after treatment with risdiplam. The observed safety profile supported the initiation of the pivotal Part 2 study. The long-term efficacy and safety of risdiplam is being assessed with ongoing treatment.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Giovanni Baranello
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, & Great Ormond Street Hospital Trust, London, UK.,Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Odile Boespflug-Tanguy
- I-Motion - Hôpital Armand Trousseau, Paris, France.,Université de Paris, UMR 1141, NeuroDiderot, Paris, France
| | - Liesbeth De Waele
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neuromuscular Reference Centre, Department of Paediatrics and Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Goemans
- Neuromuscular Reference Centre, Department of Paediatrics and Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena S Mazzone
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Astrid Pechmann
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Maria Carmela Pera
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Carole Vuillerot
- Service de Rééducation Pédiatrique Infantile "L'Escale", Hôpital Femme Mère Enfant, CHU-Lyon, Bron, France.,Neuromyogen Institute, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Lyon, France
| | - Silvia Bader-Weder
- Pharma Development, Safety, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marianne Gerber
- Pharma Development, Safety, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ksenija Gorni
- PDMA Neuroscience and Rare Disease, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Janine Hoffart
- Personalized Healthcare Analytics, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Heidemarie Kletzl
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Renata S Scalco
- Pharma Development Neurology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laurent Servais
- I-Motion - Hôpital Armand Trousseau, Paris, France.,MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège & University of Liège, Liège, Belgium
| | | |
Collapse
|
14
|
Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, McMillan HJ, Finkel RS, Swoboda KJ, Kwon JM, Zaidman CM, Chiriboga CA, Iannaccone ST, Krueger JM, Parsons JA, Shieh PB, Kavanagh S, Wigderson M, Tauscher-Wisniewski S, McGill BE, Macek TA. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med 2022; 28:1390-1397. [PMID: 35715567 PMCID: PMC9205287 DOI: 10.1038/s41591-022-01867-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
Most children with biallelic SMN1 deletions and three SMN2 copies develop spinal muscular atrophy (SMA) type 2. SPR1NT ( NCT03505099 ), a Phase III, multicenter, single-arm trial, investigated the efficacy and safety of onasemnogene abeparvovec for presymptomatic children with biallelic SMN1 mutations treated within six postnatal weeks. Of 15 children with three SMN2 copies treated before symptom onset, all stood independently before 24 months (P < 0.0001; 14 within normal developmental window), and 14 walked independently (P < 0.0001; 11 within normal developmental window). All survived without permanent ventilation at 14 months; ten (67%) maintained body weight (≥3rd WHO percentile) without feeding support through 24 months; and none required nutritional or respiratory support. No serious adverse events were considered treatment-related by the investigator. Onasemnogene abeparvovec was effective and well-tolerated for presymptomatic infants at risk of SMA type 2, underscoring the urgency of early identification and intervention.
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA.
- Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA.
- Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA.
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
- National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics and Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre, Oxford, UK
- Neuromuscular Reference Center, Department of Pediatrics, CHU & University of Liège, Liège, Belgium
| | - Hugh J McMillan
- Department of Pediatrics, Neurology & Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Richard S Finkel
- Department of Pediatrics, Nemours Children's Hospital, Orlando, FL, USA
- Center for Experimental Neurotherapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn J Swoboda
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer M Kwon
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Craig M Zaidman
- Washington University School of Medicine, St. Louis, MO, USA
| | - Claudia A Chiriboga
- Division of Pediatric Neurology, Columbia University Medical Center, New York, NY, USA
| | - Susan T Iannaccone
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jena M Krueger
- Department of Neurology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Julie A Parsons
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Perry B Shieh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | - Bryan E McGill
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | |
Collapse
|
15
|
López-Cortés A, Echeverría-Garcés G, Ramos-Medina MJ. Molecular Pathogenesis and New Therapeutic Dimensions for Spinal Muscular Atrophy. BIOLOGY 2022; 11:biology11060894. [PMID: 35741415 PMCID: PMC9219894 DOI: 10.3390/biology11060894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
The condition known as 5q spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease caused by a deficiency of the ubiquitous protein survival of motor neuron (SMN), which is encoded by the SMN1 and SMN2 genes. It is one of the most common pediatric recessive genetic diseases, and it represents the most common cause of hereditary infant mortality. After decades of intensive basic and clinical research efforts, and improvements in the standard of care, successful therapeutic milestones have been developed, delaying the progression of 5q SMA and increasing patient survival. At the same time, promising data from early-stage clinical trials have indicated that additional therapeutic options are likely to emerge in the near future. Here, we provide updated information on the molecular underpinnings of SMA; we also provide an overview of the rapidly evolving therapeutic landscape for SMA, including SMN-targeted therapies, SMN-independent therapies, and combinational therapies that are likely to be key for the development of treatments that are effective across a patient’s lifespan.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170302, Ecuador
- Facultad de Medicina, Universidad de Las Américas, Quito 170124, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
- Correspondence:
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| | - María José Ramos-Medina
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| |
Collapse
|
16
|
Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational motor neuron-2 (SMN-2) splicing modifier for spinal muscular atrophy (SMA). Expert Opin Investig Drugs 2022; 31:451-461. [PMID: 35316106 DOI: 10.1080/13543784.2022.2056836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disease which is characterized by muscle atrophy and early death in most patients. Risdiplam is the third overall and first oral drug approved for SMA with disease-modifying potential. Risdiplam acts as a survival motor neuron 2 (SMN2) pre-mRNA splicing modifier with satisfactory safety and efficacy profile. This review aims to critically appraise the place of risdiplam in the map of SMA therapeutics. AREAS COVERED This review gives an overview of the current market for SMA and presents the mechanism of action and the pharmacological properties of risdiplam. It also outlines the development of risdiplam from early preclinical stages through to the most recently published results from phase 2/3 clinical trials. Risdiplam has proved its efficacy in pivotal trials for SMA Types 1, 2, and 3 with a satisfactory safety profile. EXPERT OPINION In the absence of comparative data with the other two approved drugs, the role of risdiplam in the treatment algorithm of affected individuals is examined in three different patient populations based on the age and diagnosis method (newborn screening or clinical, symptom-driven diagnosis). Long-term data and real-world data will play a fundamental role in its future.
Collapse
Affiliation(s)
- Theodora Markati
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gemma Fisher
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sithara Ramdas
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|
17
|
Spinal muscular atrophy: Where are we now? Current challenges and high hopes. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by muscle weakness. It causes movement issues and severe physical disability. SMA is classified into four types based on the level of function achieved, age of onset, and maximum function achieved. The deletion or point mutation in the Survival of Motor Neuron 1 (SMN1) gene causes SMA. As a result, no full-length protein is produced. A nearly identical paralog, SMN2, provides enough stable protein to prevent death but not enough to compensate for SMN1's loss. The difference between SMN1 and SMN2 is due to different exon 7 alternative splicing patterns. SMA molecular therapies currently focus on restoring functional SMN protein by splicing modification of SMN2 exon 7 or elevated SMN protein levels. Nusinersen, an antisense oligonucleotide targeting the ISS-N1 sequence in SMN2 intron 7, was the first drug approved by the Food and Drug Administration. Risdiplam, a novel therapeutic that acts as an SMN2 exon 7 splicing modifier, was recently approved. All of these drugs result in the inclusion of SMN2 exon 7, and thus the production of functional SMN protein. Onasemnogene abeparvovec is a gene therapy that uses a recombinant adeno-associated virus that encodes the SMN protein. There are also experimental therapies available, such as reldesemtiv and apitegromab (SRK-015), which focus on improving muscle function or increasing muscle tissue growth, respectively. Although approved therapies have been shown to be effective, not all SMA patients can benefit from them due to age or weight, but primarily due to their high cost. This demonstrates the significance of continuous treatment improvement in today's medical challenges.
Collapse
|
18
|
Baranello G, Gorni K, Daigl M, Kotzeva A, Evans R, Hawkins N, Scott DA, Mahajan A, Muntoni F, Servais L. Prognostic Factors and Treatment-Effect Modifiers in Spinal Muscular Atrophy. Clin Pharmacol Ther 2021; 110:1435-1454. [PMID: 33792051 PMCID: PMC9292571 DOI: 10.1002/cpt.2247] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Spinal muscular atrophy (SMA) is a rare, progressive neuromuscular disease characterized by loss of motor neurons and muscle atrophy. Untreated infants with type 1 SMA do not achieve major motor milestones, and death from respiratory failure typically occurs before 2 years of age. Individuals with types 2 and 3 SMA exhibit milder phenotypes and have better functional and survival outcomes. Herein, a systematic literature review was conducted to identify factors that influence the prognosis of types 1, 2, and 3 SMA. In untreated infants with type 1 SMA, absence of symptoms at birth, a later symptom onset, and a higher survival of motor neuron 2 (SMN2) copy number are all associated with increased survival. Disease duration, age at treatment initiation, and, to a lesser extent, baseline function were identified as potential treatment‐modifying factors for survival, emphasizing that early treatment with disease‐modifying therapies (DMT) is essential in type 1 SMA. In patients with types 2 and 3 SMA, factors considered prognostic of changes in motor function were SMN2 copy number, age, and ambulatory status. Individuals aged 6–15 years were particularly vulnerable to developing complications (scoliosis and progressive joint contractures) which negatively influence functional outcomes and may also affect the therapeutic response in patients. Age at the time of treatment initiation emerged as a treatment‐effect modifier on the outcome of DMTs. Factors identified in this review should be considered prior to designing or analyzing studies in an SMA population, conducting population matching, or summarizing results from different studies on the treatments for SMA.
Collapse
Affiliation(s)
- Giovanni Baranello
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Developmental Neurology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre, University College of London Great Ormond Street Institute of Child Health, Great Ormond Street Hospital National Health Service Trust, London, UK
| | - Laurent Servais
- Division of Child Neurology Reference Center for Neuromuscular Disease, Department of Pediatrics, Centre Hospitalier Régional de Références des Maladies Neuromusculaires, University Hospital Liège & University of La Citadelle, Liège, Belgium.,Department of Paediatrics, Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|