1
|
Zhang J, Ma C, Wang R, He C, Li H, Dong S. Endokinin A/B stimulates rat gastric motility through myogenic NK1 receptors located in the fundus. Can J Physiol Pharmacol 2020; 98:691-699. [PMID: 32365302 DOI: 10.1139/cjpp-2019-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endokinin A/B (EKA/B), the common C-terminal decapeptide in endokinins A and B, is a preferred ligand of the NK1 receptor and regulates pain and itch. The study focused on the effects of EKA/B on rat gastric motility in vivo and in vitro. Gastric emptying was measured to evaluate gastric motility in vivo. Intragastric pressure and the contraction of gastric muscle strips were measured to evaluate gastric motility in vitro. Moreover, various neural blocking agents and neurokinin receptor antagonists were applied to explore the mechanisms. TAC4 and TACR1 mRNAs were expressed throughout rat stomach. EKA/B promoted gastric emptying by intraperitoneal injection in vivo. Correspondingly, EKA/B also increased intragastric pressure in vitro. Additionally, EKA/B contracted the gastric muscle strips from the fundus but not from the corpus or antrum. Further studies revealed that the contraction induced by EKA/B on muscle strips from the fundus could be significantly reduced by NK1 receptor antagonist SR140333 but not by NK2 receptor antagonist, NK3 receptor antagonist, or the neural blocking agents used. Our results suggested that EKA/B might stimulate gastric motility mainly through the direct activation of myogenic NK1 receptors located in the fundus.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Chan Ma
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Ruijia Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Chunbo He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Hailan Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| |
Collapse
|
2
|
Zhao W, Wang P, He W, Tao T, Li H, Li Y, Jiang W, Sun J, Ge X, Chen X, Zheng Y, Wei L, Chen C, Wang Y, Li C, Chen H, Yao B, Tang W, Zhu M. MYPT1 Down-regulation by Lipopolysaccharide-SIAH1/2 E3 Ligase-Ubiquitin-Proteasomal Degradation Contributes to Colonic Obstruction of Hirschsprung Disease. Cell Mol Gastroenterol Hepatol 2019; 9:345-347.e6. [PMID: 31759145 PMCID: PMC6997446 DOI: 10.1016/j.jcmgh.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Key Words
- anova, analysis of variance
- cir, circular
- d, dilated
- haec, hirschsprung-associated enterocolitis
- hd, hirschsprung disease
- long, longitudinal
- lps, lipopolysaccharide
- n, narrow
- rlc, regulatory light chain
- snp, sodium nitroprusside
Collapse
Affiliation(s)
- W Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China; Reproductive Medical Center, Jinling Hospital Affiliated Medical School of Nanjing University, Nanjing, China
| | - P Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - W He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, Suzhou, China
| | - T Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - H Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Y Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - W Jiang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - J Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - X Ge
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated Medical College of Zhejiang University, Hangzhou, China
| | - X Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - Y Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - L Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - C Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - Y Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - C Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - H Chen
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - B Yao
- Reproductive Medical Center, Jinling Hospital Affiliated Medical School of Nanjing University, Nanjing, China.
| | - W Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - M Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Borbély É, Helyes Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017; 64:9-17. [PMID: 27993375 DOI: 10.1016/j.npep.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
Hemokinin-1 (HK-1), the newest tachykinin encoded by the Tac4 gene was discovered in 2000. Its name differs from that of the other members of this peptide family due to its first demonstration in B lymphocytes. Since tachykinins are classically found in the nervous system, the significant expression of HK-1 in blood cells is a unique feature of this peptide. Due to its widespread distribution in the whole body, HK-1 is involved in different physiological and pathophysiological functions involving pain inflammation modulation, immune regulation, respiratory and endocrine functions, as well as tumor genesis. Furthermore, despite the great structural and immunological similarities to substance P (SP), the functions of HK-1 are often different or the opposite. They both have the highest affinity to the tachykinin NK1 receptor, but HK-1 is likely to have a distinct binding site and signalling pathways. Moreover, several actions of HK-1 different from SP have been suggested to be mediated via a presently not identified own receptor/target molecule. Therefore, it is very important to explore its effects at different levels and compare its characteristics with SP to get a deeper insight in the different cellular mechanisms. Since HK-1 has recently been in the focus of intensive research, in the present review we summarize the few clinical data and experimental results regarding HK-1 expression and function in different model systems obtained throughout the 16years of its history. Synthesizing these findings help to understand the complexity of HK-1 actions and determine its biomarker values and/or drug development potentials.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary
| |
Collapse
|
4
|
Lu P, Luo H, Quan X, Fan H, Tang Q, Yu G, Chen W, Xia H. The role of substance P in the maintenance of colonic hypermotility induced by repeated stress in rats. Neuropeptides 2016; 56:75-82. [PMID: 26851827 DOI: 10.1016/j.npep.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The mechanism underlying chronic stress-induced gastrointestinal (GI) dysmotility has not been fully elucidated and GI hormones have been indicated playing a role in mediating stress-induced changes in GI motor function. AIMS Our objective was to study the possible role of substance P (SP) in the colonic hypermotility induced by repeated water avoidance stress (WAS) which mimics irritable bowel syndrome. METHODS Male Wistar rats were submitted to WAS or sham WAS (SWAS) (1h/day) for up to 10 consecutive days. Enzyme Immunoassay Kit was used to detect the serum level of SP. The expression of neurokinin-1 receptor (NK1R) was investigated by Immunohistochemistry and Western blotting. The spontaneous contraction of muscle strip was studied in an organ bath system. L-type calcium channel currents (ICa,L) of smooth muscle cells (SMCs) were recorded by whole-cell patch-clamp technique. RESULTS Fecal pellet expulsion and spontaneous contraction of proximal colon in rats were increased after repeated WAS. The serum level of SP was elevated following WAS. Immunohistochemistry proved the expression of NK1R in mucosa, muscularis and myenteric plexus. Western blotting demonstrated stress-induced up-regulation of NK1R in colon devoid of mucosa and submucosa. Repeated WAS increased the contractile activities of longitudinal muscle and circular muscle strips induced by SP and this effect was reversed by a selective NK1R antagonist. The ICa,L of SMCs in the WAS rats were drastically increased compared to controls after addition of SP. CONCLUSIONS Increased serum SP level and up-regulated NK1R in colon may contribute to stress-induced colonic hypermotility. And L-type calcium channels play a potentially important role in the process of WAS-induced dysmotility.
Collapse
Affiliation(s)
- Ping Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Xiaojing Quan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han Fan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qincai Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
5
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|