1
|
Börzsei R, Zsidó BZ, Bálint M, Helyes Z, Pintér E, Hetényi C. Exploration of Somatostatin Binding Mechanism to Somatostatin Receptor Subtype 4. Int J Mol Sci 2022; 23:ijms23136878. [PMID: 35805885 PMCID: PMC9266823 DOI: 10.3390/ijms23136878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Somatostatin (also named as growth hormone-inhibiting hormone or somatotropin release-inhibiting factor) is a regulatory peptide important for the proper functioning of the endocrine system, local inflammatory reactions, mood and motor coordination, and behavioral responses to stress. Somatostatin exerts its effects via binding to G-protein-coupled somatostatin receptors of which the fourth subtype (SSTR4) is a particularly important receptor mediating analgesic, anti-inflammatory, and anti-depressant effects without endocrine actions. Thus, SSTR4 agonists are promising drug candidates. Although the knowledge of the atomic resolution-binding modes of SST would be essential for drug development, experimental elucidation of the structures of SSTR4 and its complexes is still awaiting. In the present study, structures of the somatostatin–SSTR4 complex were produced using an unbiased, blind docking approach. Beyond the static structures, the binding mechanism of SST was also elucidated in the explicit water molecular dynamics (MD) calculations, and key binding modes (external, intermediate, and internal) were distinguished. The most important residues on both receptor and SST sides were identified. An energetic comparison of SST binding to SSTR4 and 2 offered a residue-level explanation of receptor subtype selectivity. The calculated structures show good agreement with available experimental results and indicate that somatostatin binding is realized via prerequisite binding modes and an induced fit mechanism. The identified binding modes and the corresponding key residues provide useful information for future drug design targeting SSTR4.
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Algonist Gmbh, 1030 Vienna, Austria
- PharmInVivo Ltd., 7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Algonist Gmbh, 1030 Vienna, Austria
- PharmInVivo Ltd., 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
2
|
Singh P, Ray SB. Comparison of Antinociceptive Effect of Octreotide With Morphine in a Rat Model of Acute Inflammatory Pain. Ann Neurosci 2021; 28:13-20. [PMID: 34733050 PMCID: PMC8558988 DOI: 10.1177/09727531211013004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Opioids such as morphine are used for treating moderate to severe pain. However, they
also produce adverse effects such as nausea, constipation, addiction, and respiratory
depression. Thus, other suitable analgesics need to be identified. Somatostatin is an
inhibitory neuropeptide that modulates the transmission of pain. However, the half-life
of somatostatin is short. In the present study, the antinociceptive effect of octreotide
(a stable long-acting analog of somatostatin) was evaluated in rats with acute
inflammatory pain. Methods: Sprague Dawley rats (n = 42) were divided into control
(n = 6) and carrageenan injected groups (n = 36).
The carrageena group was divided into three equal subgroups and treated with saline,
morphine (10 mg/kg), and octreotide (3 µg). Rats belonging to each subgroup
(n = 12) were again randomly divided into two equal sets. They were
subjected to (a) behavioral evaluation of pain (allodynia) and estimation of paw edema,
followed by immunohistochemical analysis of the expression of somatostatin type 2
receptor (sst2r) in the spinal cord and (b) estimation of open-field activity. Allodynia
and paw edema were measured by von Frey filaments and plethysmometer, respectively, at 3
and 4 h after carrageenan injection. Expression of sst2r was examined after 24 hours,
whereas open-field activity was evaluated after 3 hours. Results: In comparison to the saline-treated group, allodynia was partially attenuated by
octreotide, though this was almost completely reversed by morphine. Paw edema was
unaffected by octreotide, though it was marginally increased by morphine. This was not
related to increased activity of rats, following relief from pain. Immunohistochemistry
revealed a significant increase in the expression of sst2r in saline-treated rats, but a
decrease in other groups. Conclusion: Octreotide has an antinociceptive effect, which was less than morphine. Increased edema
following morphine could result from venodilation. Variations in the sst2r expression
suggest its involvement in pain modulation at the spinal level. This information may
have clinical relevance.
Collapse
Affiliation(s)
- Perminder Singh
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Inhibition of ASIC-Mediated Currents by Activation of Somatostatin 2 Receptors in Rat Dorsal Root Ganglion Neurons. Mol Neurobiol 2021; 58:2107-2117. [PMID: 33411247 DOI: 10.1007/s12035-020-02257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Somatostatin (SST) and its analogues like octreotide (OCT) have analgesic effect on a variety of pain through peripheral SST receptors (SSTRs). However, the precise molecular mechanisms have not yet been fully elucidated. This research aimed to identify possible antinociceptive mechanisms, showing functional links of the SSTR2 and acid-sensing ion channels (ASICs). Herein, we reported that OCT inhibited the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. OCT concentration-dependently decreased the peak amplitude of acid-evoked inward currents, which were mediated by ASICs. OCT shifted concentration-response curve to protons downwards, with a decrease of 36.53 ± 5.28% in the maximal current response to pH 4.5 in the presence of OCT. OCT inhibited ASIC-mediated currents through SSTR2, since the inhibition was blocked by Cyn 154806, a specific SSTR2 antagonist. The OCT inhibition of ASIC-mediated currents was mimicked by H-89, a membrane-permeable inhibitor of PKA, and reversed by internal treatment of an adenylyl cyclase activator forskolin or 8-Br-cAMP. OCT also decreased the number of action potentials induced by acid stimuli through SSTR2. Finally, peripheral administration of 20 μM OCT, but not 2 μM OCT, significantly relieved nociceptive responses to intraplantar injection of acetic acid in rats. This occurred through local activation of SSTR2 in the injected hindpaw and was reversed following co-application of Cyn 154806. Our results indicate that activation SSTR2 by OCT can inhibit the activity of ASICs via an intracellular cAMP and PKA signaling pathway in rat DRG neurons. These observations demonstrate a cross-talk between ASICs and SSTR2 in peripheral sensory neurons, which was a novel peripheral analgesic mechanism of SST and its analogues.
Collapse
|
4
|
Segelcke D, Pogatzki-Zahn EM. Pathophysiology of Postoperative Pain. THE SENSES: A COMPREHENSIVE REFERENCE 2020:604-627. [DOI: 10.1016/b978-0-12-809324-5.24249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Advances in assessment of pain behaviors and mechanisms of post-operative pain models. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Abstract
Recent studies have made significant progress in identifying distinct populations of peripheral neurons involved in itch transmission, whereas the cellular identity of spinal interneurons that contribute to itch processing is still a debate. Combining genetic and pharmacological ablation of spinal excitatory neuronal subtypes and behavioral assays, we demonstrate that spinal somatostatin-positive (SOM) excitatory interneurons transmit pruritic sensation. We found that the ablation of spinal SOM/Lbx1 (SOM) neurons caused significant attenuation of scratching responses evoked by various chemical pruritogens (chemical itch). In an attempt to identify substrates of spinal itch neural circuit, we observed that spinal SOM neurons partially overlapped with neurons expressing natriuretic peptide receptor A (Npra), the receptor of peripheral itch transmitter B-type natriuretic peptide. Spinal SOM neurons, however, did not show any overlap with itch transmission neurons expressing gastrin-releasing peptide receptor in the dorsal spinal cord, and the gastrin-releasing peptide-triggered scratching responses were intact after ablating spinal SOM neurons. Dual ablation of SOM and Npra neurons in the spinal cord reduced chemical itch responses to a greater extent than ablation of SOM or Npra neurons alone, suggesting the existence of parallel spinal pathways transmitting chemical itch. Furthermore, we showed that SOM peptide modulated itch processing through disinhibition of somatostatin receptor 2A-positive inhibitory interneuron. Together, our findings reveal a novel spinal mechanism for sensory encoding of itch perception.
Collapse
|
7
|
Kumar R, Gautam M, Prasoon P, Gupta S, Ray SB. Comparison of the peripheral antinociceptive effect of somatostatin with bupivacaine and morphine in the rodent postoperative pain model. Eur J Anaesthesiol 2019; 35:955-965. [PMID: 29762151 DOI: 10.1097/eja.0000000000000825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Infiltration of surgical wound with local anaesthetics attenuate postoperative pain. However, side effects can also occur. Somatostatin (SST) and its analogues like octreotide reportedly reduce peripheral sensitisation. The current study evaluates peripherally mediated antinociceptive effect of SST in a rat model of postoperative pain. This was compared with bupivacaine and morphine under identical experimental conditions. DESIGN Randomised vehicle-controlled blind study. SETTING Pain research laboratory, All India Institute of Medical Sciences, New Delhi from February 2014 to July 2017. EXPERIMENTAL SUBJECT Rodent hind paw incision model. INTERVENTIONS Sprague-Dawley rats were subjected to incision and one of the following drugs administered into the open wound once by a micropipette: SST (10, 30 or 100 μg), bupivacaine (3, 10, 30, 50 or 100 μg) or morphine (100 μg). Antinociceptive effect of SST was further evaluated for its reversibility, site of action, effect on spinal c-fos expression and blood glucose level. The site of action of morphine was also investigated. MAIN OUTCOME MEASURE Nociception was estimated by nonevoked (guarding behaviour) and evoked (mechanical allodynia and thermal hyperalgesia) pain behaviours between 2 h and days 4 to 7. RESULTS Nociception was maximum 2 h after incision. SST (10 to 100 μg) significantly attenuated guarding behaviour between 2 h and day 2. A delayed inhibitory effect was observed on allodynia. Bupivacaine (10 to 100 μg doses) similarly decreased guarding score up to day 2 though evoked pain behaviours were relatively unaffected. In contrast, morphine produced a potent but transient inhibitory effect on guarding score at 2 h, which was mediated by both peripheral and central opioid receptors. The antinociceptive effect of SST was peripherally mediated by type 2 receptors and was associated with decreased c-fos staining. Blood glucose level was unaltered. CONCLUSION Guarding behaviour, which likely represents pain-at-rest following surgery, was attenuated by both bupivacaine and SST to comparable extents. This novel peripherally mediated antinociceptive effect of SST needs further evaluation.
Collapse
Affiliation(s)
- Rahul Kumar
- From the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India (RK, MG, PP, SG, SBR)
| | | | | | | | | |
Collapse
|
8
|
Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia. BMC Neurosci 2019; 20:18. [PMID: 31023212 PMCID: PMC6485123 DOI: 10.1186/s12868-019-0502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite increasing evidence that lipopolysaccharide (LPS) affects the biological active substances of dorsal root ganglia (DRG) we have limited knowledge of the influence of a single low dose of LPS, which does not result in any clinical symptoms of disease (subclinical LPS) on neuropeptides connected with the sensory pathway. Accordingly, in this work, we investigated the influence of subclinical LPS from Salmonella Enteritidis on selected neuropeptides: substance P (SP), galanin (GAL), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM) in the cervical, thoracic, lumbar and sacral regions of the DRG and spinal cord. Methods This study was performed on immature female pigs of the Pietrain × Duroc breed. Seven days after the intravenous injection of saline solution for control animals (n = 5) and 5 μg/kg b.w. LPS from S. Enteritidis for the experimental group (n = 5), the DRG and the spinal cord were collected to extract the neuropeptides using solid-phase extraction technology. Results Our results demonstrated that subclinical LPS in DRG was able to change the levels of all studied neuropeptides except SOM, whereas in the spinal cord it down-regulated all studied neuropeptides in the sacral spinal cord, maintaining the concentration of all studied neuropeptides in other regions similar to that observed in the control animals. The significant differences in the intensity and character of observed changes between particular regions of the DRG suggest that the exact functions of the studied neuropeptides and mechanisms of responses to subclinical LPS action depend on specific characteristics and functions of each examination region of DRG. Conclusions The mechanisms of observed changes are not fully understood and require further study of the molecular interactions between subclinical LPS from S. Enteritidis and neuronal and non-neuronal cells of DRG and spinal cord. The peripheral and central pain pathways must be analysed with the aspect of unknown long-term consequences of the influence of subclinical LPS from S. Enteritidis on neuropeptides in the spinal cord and the dorsal root ganglia.
Collapse
|
9
|
Lambert GA, Zagami AS. Does somatostatin have a role to play in migraine headache? Neuropeptides 2018; 69:1-8. [PMID: 29751998 DOI: 10.1016/j.npep.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 04/15/2018] [Indexed: 11/24/2022]
Abstract
Migraine is a condition without apparent pathology. Its cardinal symptom is the prolonged excruciating headache. Theories about this pain have posited pathologies which run the gamut from neural to vascular to neurovascular, but no observations have detected a plausible pathology. We believe that no pathology can be found for migraine headache because none exists. Migraine is not driven by pathology - it is driven by neural events produced by triggers - or simply by neural noise- noise that has crossed a critical threshold. If these ideas are true, how does the pain arise? We hypothesise that migraine headache is a consequence of withdrawal of descending pain control, produced by "noise" in the cerebral cortex. Nevertheless, there has to be a neural circuit to transform cortical noise to withdrawal of pain control. In our hypothesis, this neural circuit extends from the cortex, synapses in two brainstem nuclei (the periaqueductal gray matter and the raphe magnus nucleus) and ultimately reaches the first synapse of the trigeminal sensory system. The second stage of this circuit uses serotonin (5HT) as a neurotransmitter, but the neuronal projection from the cortex to the brainstem seems to involve relatively uncommon neurotransmitters. We believe that one of these is somatostatin (SST). Temporal changes in levels of circulating SST mirror the temporal changes in the incidence of migraine, particularly in women. The SST2 receptor agonist octreotide has been used with some success in migraine and cluster headache. A cortical to PAG/NRM neural projection certainly exists and we briefly review the anatomical and neurophysiological evidence for it and provide preliminary evidence that SST may the critical neurotransmitter in this pathway. We therefore suggest that the withdrawal of descending tone in SST-containing neurons, might create a false pain signal and hence the headache of migraine.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Prince of Wales Clinical School, UNSW, Australia; School of Medicine, University of Western Sydney, Australia.
| | - Alessandro S Zagami
- Prince of Wales Clinical School, UNSW, Australia; Institute of Neurological Sciences, Prince of Wales Hospital, Australia
| |
Collapse
|
10
|
Walsh KB, Gay EA, Blough BE, Geurkink DW. N-(2-methoxyphenyl) benzenesulfonamide, a novel regulator of neuronal G protein-gated inward rectifier K + channels. Eur J Pharmacol 2017; 815:233-240. [PMID: 28935562 DOI: 10.1016/j.ejphar.2017.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
G protein-gated inward rectifier K+ (GIRK) channels are members of the super-family of proteins known as inward rectifier K+ (Kir) channels and are expressed throughout the peripheral and central nervous systems. Neuronal GIRK channels are the downstream targets of a number of neuromodulators including opioids, somatostatin, dopamine and cannabinoids. Previous studies have demonstrated that the ATP-sensitive K+ channel, another member of the Kir channel family, is regulated by sulfonamide drugs. Therefore, to determine if sulfonamides also modulate GIRK channels, we screened a library of arylsulfonamide compounds using a GIRK channel fluorescent assay that utilized pituitary AtT20 cells expressing GIRK channels along with the somatostatin type-2 and -5 receptors. Enhancement of the GIRK channel fluorescent signal by one compound, N-(2-methoxyphenyl) benzenesulfonamide (MPBS), was dependent on the activation of the channel by somatostatin. In whole-cell patch clamp experiments, application of MPBS both shifted the somatostatin concentration-response curve (EC50 = 3.5nM [control] vs.1.0nM [MPBS]) for GIRK channel activation and increased the maximum GIRK current measured with 100nM somatostatin. However, GIRK channel activation was not observed when MPBS was applied to the cells in the absence of somatostatin. While the MPBS structural analog 4-fluoro-N-(2-methoxyphenyl) benzenesulfonamide also augmented the somatostatin-induced GIRK fluorescent signal, no increase in the signal was observed with the sulfonamides tolbutamide, sulfapyridine and celecoxib. In conclusion, MPBS represents a novel prototypic GPCR-dependent regulator of neuronal GIRK channels.
Collapse
Affiliation(s)
- Kenneth B Walsh
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, United States.
| | - Elaine A Gay
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, United States
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, United States
| | - David W Geurkink
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, United States
| |
Collapse
|
11
|
Otis C, Guillot M, Moreau M, Martel-Pelletier J, Pelletier JP, Beaudry F, Troncy E. Spinal neuropeptide modulation, functional assessment and cartilage lesions in a monosodium iodoacetate rat model of osteoarthritis. Neuropeptides 2017; 65:56-62. [PMID: 28456437 DOI: 10.1016/j.npep.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Characterising the temporal evolution of changes observed in pain functional assessment, spinal neuropeptides and cartilage lesions of the joint after chemical osteoarthritis (OA) induction in rats. METHODS AND RESULTS On day (D) 0, OA was induced by an IA injection of monosodium iodoacetate (MIA). Rats receiving 2mg MIA were temporally assessed at D3, D7, D14 and D21 for the total spinal cord concentration of substance P (SP), calcitonin gene related-peptide (CGRP), bradykinin (BK) and somatostatin (STT), and for severity of cartilage lesions. At D21, the same outcomes were compared with the IA 1mg MIA, IA 2mg MIA associated with punctual IA injection of lidocaine at D7, D14 and D21, sham (sterile saline) and naïve groups. Tactile allodynia was sequentially assessed using a von Frey anaesthesiometer. Non-parametric and mixed models were applied for statistical analysis. Tactile allodynia developed in the 2mg MIA group as soon as D3 and was maintained up to D21. Punctual IA treatment with lidocaine counteracted it at D7 and D14. Compared to naïve, [STT], [BK] and [CGRP] reached a maximum as early as D7, which plateaued up to D21. For [SP], the increase was delayed up to D14 and maintained at D21. No difference in levels of neuropeptides was observed between MIA doses, except for higher [STT] in the 2mg MIA group (P=0.029). Neuropeptides SP and BK were responsive to lidocaine treatment. The increase in severity of cartilage lesions was significant only in the 2mg MIA groups (P=0.01). CONCLUSION In the MIA OA pain model, neuropeptide modulation appears early, and confirms the central nervous system to be an attractive target for OA pain quantification. The relationship of neuropeptide release with severity of cartilage lesions and functional assessment are promising and need further validation.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
12
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|