1
|
Neves RVP, Rosa TS, Souza MK, Oliveira AJC, Gomes GNS, Brixi B, Souza LHR, Deus LA, Simões HG, Stone WJ, Prestes J, Moraes MR. Dynamic, Not Isometric Resistance Training Improves Muscle Inflammation, Oxidative Stress and Hypertrophy in Rats. Front Physiol 2019; 10:4. [PMID: 30723416 PMCID: PMC6349781 DOI: 10.3389/fphys.2019.00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
This study aimed to compare the effects of dynamic (DRT) and isometric (IRT) resistance training on blood glucose, muscle redox capacity, inflammatory state, and muscle strength and hypertrophy. Fifteen 12-week-old male Wistar rats were randomly allocated into three groups: control group (CTL), DRT, and IRT, n = 5 animals per group. The animals were submitted to a maximal weight carried (MWC; every 15 days) and maximum isometric resistance (MIR; pre- and post-training) tests. Both training protocols were performed five times a week during 12 weeks, consisting of one set of eight uninterrupted climbs for 1 min with a 30% overload of MWC. The animals in the IRT group remained under isometry for 1 min. The DRT group experienced greater MWC from pre- to post-training compared to the CTL and IRT groups (p < 0.0001). The DRT and IRT groups displayed similar gains in MIR (p = 0.3658). The DRT group exhibited improved glycemic homeostasis (p = 0.0111), redox (p < 0.0001), and inflammatory (p < 0.0001) balance as compared with CTL and IRT groups. In addition, the improved glycemic profile was associated with an increase in muscle strength and hypertrophy, improvement in redox balance and inflammation status. We conclude that DRT was more effective than IRT on increasing cross-sectional area, but not muscle strength, in parallel to improved blood glucose, inflammatory status, and redox balance.
Collapse
Affiliation(s)
| | - Thiago Santos Rosa
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil.,Graduate Program in Exercise Physiology, Ibirapuera University, São Paulo, Brazil
| | - Michel Kendy Souza
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | | | | | - Bernardo Brixi
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | - Luiz Humberto Rodrigues Souza
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil.,Physical Education, State of Bahia University (UNEB) - DEDC/XII Campus, Guanambi, Brazil
| | - Lysleine Alves Deus
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | - Herbert Gustavo Simões
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | - Whitley Jo Stone
- School of Nutrition, Kinesiology, and Psychological Sciences, University of Central Missouri, Warrensburg, MO, United States
| | - Jonato Prestes
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | - Milton Rocha Moraes
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
2
|
Ai XM, Ho LC, Han LL, Lu JJ, Yue X, Yang NY. The role of splenectomy in lipid metabolism and atherosclerosis (AS). Lipids Health Dis 2018; 17:186. [PMID: 30111317 PMCID: PMC6094557 DOI: 10.1186/s12944-018-0841-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
The extensive performance of splenectomy worldwide for patients suffered from splenic trauma has given rise to high risks of postoperative complications, which has been attracting increasing attention in recent years. Nowadays the spleen is regarded as a versatile organ of the human body, invested with various excellent properties. The spleen has been recognized to take a great part in lipid metabolism. While removal of the spleen intends to alter lipid values, especially with an elevated LDL, splenic autotransplantation is able to normalize these lipid alterations. What is more, conservative surgical procedures like subtotal or partial splenectomy, could as well, afford a correction of dyslipidemia. At the same time, clinically, splenectomy demonstrates a high rate of atherosclerosis (AS), whereas non-surgical treatment after splenic trauma shows unchanged propagation of AS. Based on the intimate relationship between serum lipids and AS, the lipid changes modulated by splenectomy are believed to be responsible for the development of AS. Therefore, a "splenic factor" is most likely present in the regulation of lipidation and AS. Several theories have been postulated to elucidate the possible mechanism involved, among which most are primarily based on its forceful natural immune function, that is to say, the mononuclear phagocytic system.However, the accurate mechanisms behind this mysterious phenomenon still remain unclear so far. Of importance, lipid fractions should be monitored consecutively in case of inevitable splenectomy.
Collapse
Affiliation(s)
- Xiao-Ming Ai
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China.
| | - Li-Chen Ho
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Lu-Lu Han
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Jin-Jing Lu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Xiong Yue
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Nian-Yin Yang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| |
Collapse
|
3
|
Gubin DG, Nelaeva AA, Uzhakova AE, Hasanova YV, Cornelissen G, Weinert D. Disrupted circadian rhythms of body temperature, heart rate and fasting blood glucose in prediabetes and type 2 diabetes mellitus. Chronobiol Int 2017; 34:1136-1148. [PMID: 28759269 DOI: 10.1080/07420528.2017.1347670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a progressive disruption of 24-h rhythms in fasting blood glucose (FBG), body temperature (BT) and heart rate (HR) associated with metabolic dysfunction and the development of prediabetes (PD) and type 2 diabetes mellitus (T2DM) in overweight middle-aged (40-69 years old) humans. Increasing BT and HR mean values and declining 24-h BT and HR amplitudes accompany adverse changes in metabolic state. Increased nocturnal BT and a phase delay of the 24-h BT rhythm, deviant 24-h HR profile and a phase advance of the 24-h HR and FBG rhythms are early signs of the PD metabolic state. In T2DM, the 24-h FBG rhythm is no longer detectable, and the 24-h amplitudes of BT and HR are greatly diminished. In addition, lepton and creatinine values were lowered in T2DM. Moreover, positive correlations between FBG and body mass index, BMI, and negative correlations between the 24-h amplitude of FBG and BMI indicate that overweight is an additional factor causing disruption of the circadian rhythms. Further studies on circadian disruption as a consequence of metabolic dysfunction are necessary. The quantitative analysis of changing circadian BT and HR rhythms may provide prognostic markers of T2DM and therapeutic targets for its prevention and correction.
Collapse
Affiliation(s)
- D G Gubin
- a Department of Biology , Medical University , Tyumen , Russia
| | - A A Nelaeva
- b Department of Endocrinology , Medical University , Tyumen , Russia
| | - A E Uzhakova
- b Department of Endocrinology , Medical University , Tyumen , Russia
| | - Y V Hasanova
- b Department of Endocrinology , Medical University , Tyumen , Russia
| | - G Cornelissen
- c Halberg Chronobiology Center , University of Minnesota , Minneapolis , MN , USA
| | - D Weinert
- d Institute of Biology/Zoology , Martin Luther University , Halle-Wittenberg , Germany
| |
Collapse
|